Cargando…
Artificial Neural Network-Based Early-Age Concrete Strength Monitoring Using Dynamic Response Signals
Concrete is one of the most common materials used to construct a variety of civil infrastructures. However, since concrete might be susceptible to brittle fracture, it is essential to confirm the strength of concrete at the early-age stage of the curing process to prevent unexpected collapse. To add...
Autores principales: | Kim, Junkyeong, Lee, Chaggil, Park, Seunghee |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5492300/ https://www.ncbi.nlm.nih.gov/pubmed/28590456 http://dx.doi.org/10.3390/s17061319 |
Ejemplares similares
-
Development of Embedded EM Sensors for Estimating Tensile Forces of PSC Girder Bridges
por: Kim, Junkyeong, et al.
Publicado: (2017) -
Comparative Analysis and Strength Estimation of Fresh Concrete Based on Ultrasonic Wave Propagation and Maturity Using Smart Temperature and PZT Sensors
por: Tareen, Najeebullah, et al.
Publicado: (2019) -
Fuzzy Logic-Based and Nondestructive Concrete Strength Evaluation Using Modified Carbon Nanotubes as a Hybrid PZT–CNT Sensor
por: Tareen, Najeebullah, et al.
Publicado: (2021) -
Modelling the Influence of Waste Rubber on Compressive Strength of Concrete by Artificial Neural Networks
por: Hadzima-Nyarko, Marijana, et al.
Publicado: (2019) -
Prediction of the Compressive Strength of Recycled Aggregate Concrete Based on Artificial Neural Network
por: Bu, Liangtao, et al.
Publicado: (2021)