Cargando…

Changes in muscle cross-sectional area, muscle force, and jump performance during 6 weeks of progressive whole-body vibration combined with progressive, high intensity resistance training

OBJECTIVES: We hypothesized that progressive whole-body vibration (WBV) superimposed to progressive high intensity resistance training has greater effects on muscle cross-sectional area (CSA), muscle force of leg muscles, and jump performance than progressive high intensity resistance training alone...

Descripción completa

Detalles Bibliográficos
Autores principales: Rosenberger, A., Beijer, Å., Johannes, B., Schoenau, E., Mester, J., Rittweger, J., Zange, J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: International Society of Musculoskeletal and Neuronal Interactions 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5492318/
https://www.ncbi.nlm.nih.gov/pubmed/28574410
Descripción
Sumario:OBJECTIVES: We hypothesized that progressive whole-body vibration (WBV) superimposed to progressive high intensity resistance training has greater effects on muscle cross-sectional area (CSA), muscle force of leg muscles, and jump performance than progressive high intensity resistance training alone. METHODS: Two groups of healthy male subjects performed either 6 weeks of Resistive Vibration Exercise (RVE, squats and heel raises with WBV, n=13) or Resistive Exercise (RE, squats and heel raises without WBV, n=13). Squats under RVE required indispensable weight loading on the forefoot to damp harmful vibrations to the head. Time, intervention, and interaction effects were analyzed. RESULTS: After 6 weeks of training, knee extensor CSA, isometric knee extension force, and counter movement jump height increased equally in both groups (time effect, P<0.001, P≤0.02, and P≤0.03, respectively), whereas only in RVE ankle plantar flexor CSA and isometric ankle plantar flexion force reached significance or a tendency, respectively, (time effect, P=0.015 and P=0.069, respectively; intervention effect also for the latter, P=0.006). Drop jump contact time did significantly more improve in RVE (interaction effect, P=0.042). CONCLUSIONS: RVE showed better training effects than RE only in plantar flexor muscles. RVE seems to be suitable in professional sports with a special focus on calf muscles.