Cargando…
Evaluation of Feature Extraction and Recognition for Activity Monitoring and Fall Detection Based on Wearable sEMG Sensors
As an essential subfield of context awareness, activity awareness, especially daily activity monitoring and fall detection, plays a significant role for elderly or frail people who need assistance in their daily activities. This study investigates the feature extraction and pattern recognition of su...
Autores principales: | Xi, Xugang, Tang, Minyan, Miran, Seyed M., Luo, Zhizeng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5492463/ https://www.ncbi.nlm.nih.gov/pubmed/28555016 http://dx.doi.org/10.3390/s17061229 |
Ejemplares similares
-
Feature-Level Fusion of Surface Electromyography for Activity Monitoring
por: Xi, Xugang, et al.
Publicado: (2018) -
Human activity monitoring system based on wearable sEMG and accelerometer wireless sensor nodes
por: Biagetti, Giorgio, et al.
Publicado: (2018) -
A Spiking Neural Network in sEMG Feature Extraction
por: Lobov, Sergey, et al.
Publicado: (2015) -
Feature Fusion-Based Improved Capsule Network for sEMG Signal Recognition
por: Wang, Wanliang, et al.
Publicado: (2022) -
LST-EMG-Net: Long short-term transformer feature fusion network for sEMG gesture recognition
por: Zhang, Wenli, et al.
Publicado: (2023)