Cargando…
Time-Frequency Analysis of Non-Stationary Biological Signals with Sparse Linear Regression Based Fourier Linear Combiner
It is often difficult to analyze biological signals because of their nonlinear and non-stationary characteristics. This necessitates the usage of time-frequency decomposition methods for analyzing the subtle changes in these signals that are often connected to an underlying phenomena. This paper pre...
Autores principales: | Wang, Yubo, Veluvolu, Kalyana C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5492605/ https://www.ncbi.nlm.nih.gov/pubmed/28613239 http://dx.doi.org/10.3390/s17061386 |
Ejemplares similares
-
Non-linear and non-stationary time series analysis /
por: Priestley, M. B. (Maurice Bertram)
Publicado: (1988) -
Time-frequency analysis of band-limited EEG with BMFLC and Kalman filter for BCI applications
por: Wang, Yubo, et al.
Publicado: (2013) -
Deconvolved Fractional Fourier Domain Beamforming for Linear Frequency Modulation Signals
por: Liu, Zhuoran, et al.
Publicado: (2023) -
Block Sparse Compressed Sensing of Electroencephalogram (EEG) Signals by Exploiting Linear and Non-Linear Dependencies
por: Mahrous, Hesham, et al.
Publicado: (2016) -
Sparse signals recovered by non-convex penalty in quasi-linear systems
por: Cui, Angang, et al.
Publicado: (2018)