Cargando…
DeepMap+: Recognizing High-Level Indoor Semantics Using Virtual Features and Samples Based on a Multi-Length Window Framework
Existing indoor semantic recognition schemes are mostly capable of discovering patterns through smartphone sensing, but it is hard to recognize rich enough high-level indoor semantics for map enhancement. In this work we present DeepMap+, an automatical inference system for recognizing high-level in...
Autores principales: | Zhang, Wei, Zhou, Siwang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5492840/ https://www.ncbi.nlm.nih.gov/pubmed/28587117 http://dx.doi.org/10.3390/s17061214 |
Ejemplares similares
-
Semantic framework for mapping object-oriented model to semantic web languages
por: Ježek, Petr, et al.
Publicado: (2015) -
Visual Semantic Landmark-Based Robust Mapping and Localization for Autonomous Indoor Parking
por: Zhao, Junqiao, et al.
Publicado: (2019) -
Crowdsourcing-Based Indoor Semantic Map Construction and Localization Using Graph Optimization
por: Li, Chao, et al.
Publicado: (2022) -
Orchard Mapping with Deep Learning Semantic Segmentation
por: Anagnostis, Athanasios, et al.
Publicado: (2021) -
Research on Distance Transform and Neural Network Lidar Information Sampling Classification-Based Semantic Segmentation of 2D Indoor Room Maps
por: Zheng, Tao, et al.
Publicado: (2021)