Cargando…
Performance of BDS-3: Measurement Quality Analysis, Precise Orbit and Clock Determination
Since 2015, China has successfully launched five experimental BeiDou global navigation system (BDS-3) satellites for expanding the regional system to global coverage. An initial performance assessment and characterization analysis of the BDS-3 is presented. Twenty days of tracking data have been col...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5492857/ https://www.ncbi.nlm.nih.gov/pubmed/28555027 http://dx.doi.org/10.3390/s17061233 |
Sumario: | Since 2015, China has successfully launched five experimental BeiDou global navigation system (BDS-3) satellites for expanding the regional system to global coverage. An initial performance assessment and characterization analysis of the BDS-3 is presented. Twenty days of tracking data have been collected from eleven monitoring stations. The tracking characteristics and measurement quality are analyzed and compared with the regional BDS (BDS-2) in terms of observed carrier-to-noise density ratio, pseudo-range multipath, and noise. The preliminary results suggest that the measurement quality of BDS-3 outperforms the BDS-2 for the same type of satellites. In addition, the analysis of multipath combinations reveals that the problem of satellite-induced code biases found in BDS-2 seems to have been solved for BDS-3. Precise orbit and clock determination are carried out and evaluated. The orbit overlap comparison show a precision of 2–6 dm in 3D root mean square (RMS) and 6–14 cm in the radial component for experimental BDS-3 satellites. External validations with satellite laser ranging (SLR) show residual RMS on the level of 1–3 dm. Finally, the performance of the new-generation onboard atomic clocks is evaluated and results confirm an increased stability compared to BDS-2 satellite clocks. |
---|