Cargando…
A Novel Extreme Learning Machine Classification Model for e-Nose Application Based on the Multiple Kernel Approach
A novel classification model, named the quantum-behaved particle swarm optimization (QPSO)-based weighted multiple kernel extreme learning machine (QWMK-ELM), is proposed in this paper. Experimental validation is carried out with two different electronic nose (e-nose) datasets. Being different from...
Autores principales: | Jian, Yulin, Huang, Daoyu, Yan, Jia, Lu, Kun, Huang, Ying, Wen, Tailai, Zeng, Tanyue, Zhong, Shijie, Xie, Qilong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5492859/ https://www.ncbi.nlm.nih.gov/pubmed/28629202 http://dx.doi.org/10.3390/s17061434 |
Ejemplares similares
-
Feature Extraction of Electronic Nose Signals Using QPSO-Based Multiple KFDA Signal Processing
por: Wen, Tailai, et al.
Publicado: (2018) -
A Novel Reformed Reduced Kernel Extreme Learning Machine with RELIEF-F for Classification
por: Liu, Zongying, et al.
Publicado: (2022) -
E-Nose Discrimination of Almond Oils Extracted from Roasted Kernels
por: Álvarez-Ortí, Manuel, et al.
Publicado: (2022) -
Domain Correction Based on Kernel Transformation for Drift Compensation in the E-Nose System
por: Tao, Yang, et al.
Publicado: (2018) -
Classification of EEG Signals Using a Multiple Kernel Learning Support Vector Machine
por: Li, Xiaoou, et al.
Publicado: (2014)