Cargando…
RGIFE: a ranked guided iterative feature elimination heuristic for the identification of biomarkers
BACKGROUND: Current -omics technologies are able to sense the state of a biological sample in a very wide variety of ways. Given the high dimensionality that typically characterises these data, relevant knowledge is often hidden and hard to identify. Machine learning methods, and particularly featur...
Autores principales: | Lazzarini, Nicola, Bacardit, Jaume |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5493069/ https://www.ncbi.nlm.nih.gov/pubmed/28666416 http://dx.doi.org/10.1186/s12859-017-1729-2 |
Ejemplares similares
-
Functional networks inference from rule-based machine learning models
por: Lazzarini, Nicola, et al.
Publicado: (2016) -
Iterative rank-order normalization of gene expression microarray data
por: Welsh, Eric A, et al.
Publicado: (2013) -
Iterative feature removal yields highly discriminative pathways
por: O’Hara, Stephen, et al.
Publicado: (2013) -
Iterative guided machine learning-assisted systematic literature reviews: a diabetes case study
por: Zimmerman, John, et al.
Publicado: (2021) -
PageRank as a method to rank biomedical literature by importance
por: Yates, Elliot J., et al.
Publicado: (2015)