Cargando…

The PAPI-1 pathogenicity island-encoded small RNA PesA influences Pseudomonas aeruginosa virulence and modulates pyocin S3 production

Small non-coding RNAs (sRNAs) are post-transcriptional regulators of gene expression that have been recognized as key contributors to bacterial virulence and pathogenic mechanisms. In this study, we characterized the sRNA PesA of the opportunistic human pathogen Pseudomonas aeruginosa. We show that...

Descripción completa

Detalles Bibliográficos
Autores principales: Ferrara, Silvia, Falcone, Marilena, Macchi, Raffaella, Bragonzi, Alessandra, Girelli, Daniela, Cariani, Lisa, Cigana, Cristina, Bertoni, Giovanni
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5493400/
https://www.ncbi.nlm.nih.gov/pubmed/28665976
http://dx.doi.org/10.1371/journal.pone.0180386
Descripción
Sumario:Small non-coding RNAs (sRNAs) are post-transcriptional regulators of gene expression that have been recognized as key contributors to bacterial virulence and pathogenic mechanisms. In this study, we characterized the sRNA PesA of the opportunistic human pathogen Pseudomonas aeruginosa. We show that PesA, which is transcribed within the pathogenicity island PAPI-1 of P. aeruginosa strain PA14, contributes to P. aeruginosa PA14 virulence. In fact, pesA gene deletion resulted in a less pathogenic strain, showing higher survival of cystic fibrosis human bronchial epithelial cells after infection. Moreover, we show that PesA influences positively the expression of pyocin S3 whose genetic locus comprises two structural genes, pyoS3A and pyoS3I, encoding the killing S3A and the immunity S3I proteins, respectively. Interestingly, the deletion of pesA gene results in increased sensitivity to UV irradiation and to the fluoroquinolone antibiotic ciprofloxacin. The degree of UV sensitivity displayed by the PA14 strain lacking PesA is comparable to that of a strain deleted for pyoS3A-I. These results suggest an involvement of pyocin S3 in DNA damage repair and a regulatory role of PesA on this function.