Cargando…
User adaptation in Myoelectric Man-Machine Interfaces
State of the art clinical hand prostheses are controlled in a simple and limited way that allows the activation of one function at a time. More advanced laboratory approaches, based on machine learning, offer a significant increase in functionality, but their clinical impact is limited, mainly due t...
Autores principales: | Hahne, Janne M., Markovic, Marko, Farina, Dario |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5493618/ https://www.ncbi.nlm.nih.gov/pubmed/28667260 http://dx.doi.org/10.1038/s41598-017-04255-x |
Ejemplares similares
-
A Novel Percutaneous Electrode Implant for Improving Robustness in Advanced Myoelectric Control
por: Hahne, Janne M., et al.
Publicado: (2016) -
EMG Biofeedback for online predictive control of grasping force in a myoelectric prosthesis
por: Dosen, Strahinja, et al.
Publicado: (2015) -
Directional Forgetting for Stable Co-Adaptation in Myoelectric Control
por: Yeung, Dennis, et al.
Publicado: (2019) -
Neuro-Musculoskeletal Mapping for Man-Machine Interfacing
por: Kapelner, Tamas, et al.
Publicado: (2020) -
The clinical relevance of advanced artificial feedback in the control of a multi-functional myoelectric prosthesis
por: Markovic, Marko, et al.
Publicado: (2018)