Cargando…
An integrated hyperspectral imaging and genome-wide association analysis platform provides spectral and genetic insights into the natural variation in rice
With progress of genetic sequencing technology, plant genomics has experienced rapid development and subsequently triggered the progress of plant phenomics. In this study, a high-throughput hyperspectral imaging system (HHIS) was developed to obtain 1,540 hyperspectral indices at whole-plant level d...
Autores principales: | Feng, Hui, Guo, Zilong, Yang, Wanneng, Huang, Chenglong, Chen, Guoxing, Fang, Wei, Xiong, Xiong, Zhang, Hongyu, Wang, Gongwei, Xiong, Lizhong, Liu, Qian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5493659/ https://www.ncbi.nlm.nih.gov/pubmed/28667309 http://dx.doi.org/10.1038/s41598-017-04668-8 |
Ejemplares similares
-
Combining high-throughput phenotyping and genome-wide association studies to reveal natural genetic variation in rice
por: Yang, Wanneng, et al.
Publicado: (2014) -
Accurate Digitization of the Chlorophyll Distribution of Individual Rice Leaves Using Hyperspectral Imaging and an Integrated Image Analysis Pipeline
por: Feng, Hui, et al.
Publicado: (2017) -
Genome-wide association study of rice (Oryza sativa L.) leaf traits with a high-throughput leaf scorer
por: Yang, Wanneng, et al.
Publicado: (2015) -
Field rice panicle detection and counting based on deep learning
por: Wang, Xinyi, et al.
Publicado: (2022) -
Genetic analyses of lodging resistance and yield provide insights into post‐Green‐Revolution breeding in rice
por: Guo, Zilong, et al.
Publicado: (2020)