Cargando…

Common mechanism of thermodynamic and mechanical origin for ageing and crystallization of glasses

The glassy state is known to undergo slow structural relaxation, where the system progressively explores lower free-energy minima which are either amorphous (ageing) or crystalline (devitrification). Recently, there is growing interest in the unusual intermittent collective displacements of a large...

Descripción completa

Detalles Bibliográficos
Autores principales: Yanagishima, Taiki, Russo, John, Tanaka, Hajime
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5493766/
https://www.ncbi.nlm.nih.gov/pubmed/28660879
http://dx.doi.org/10.1038/ncomms15954
Descripción
Sumario:The glassy state is known to undergo slow structural relaxation, where the system progressively explores lower free-energy minima which are either amorphous (ageing) or crystalline (devitrification). Recently, there is growing interest in the unusual intermittent collective displacements of a large number of particles known as ‘avalanches’. However, their structural origin and dynamics are yet to be fully addressed. Here, we study hard-sphere glasses which either crystallize or age depending on the degree of size polydispersity, and show that a small number of particles are thermodynamically driven to rearrange in regions of low density and bond orientational order. This causes a transient loss of mechanical equilibrium which facilitates a large cascade of motion. Combined with previously identified phenomenology, we have a complete kinetic pathway for structural change which is common to both ageing and crystallization. Furthermore, this suggests that transient force balance is what distinguishes glasses from supercooled liquids.