Cargando…

An indirect watermark hiding in discrete cosine transform–singular value decomposition domain for copyright protection

Digital image watermarking has emerged as a promising solution for copyright protection. In this paper, a discrete cosine transform (DCT) and singular value decomposition (SVD) based hybrid robust image watermarking method using Arnold scrambling is proposed and simulated to protect the copyright of...

Descripción completa

Detalles Bibliográficos
Autores principales: Roy, Soumitra, Pal, Arup Kumar
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society Publishing 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5493926/
https://www.ncbi.nlm.nih.gov/pubmed/28680684
http://dx.doi.org/10.1098/rsos.170326
Descripción
Sumario:Digital image watermarking has emerged as a promising solution for copyright protection. In this paper, a discrete cosine transform (DCT) and singular value decomposition (SVD) based hybrid robust image watermarking method using Arnold scrambling is proposed and simulated to protect the copyright of natural images. In this proposed scheme, before embedding, watermark is scrambled with Arnold scrambling. Then, the greyscale cover image and encrypted watermark logo are decomposed into non-overlapping blocks and subsequently some selected image blocks are transformed into the DCT domain for inserting the watermark blocks permanently. For better imperceptibility and effectiveness, in this proposed algorithm, watermark image blocks are embedded into singular values of selected blocks by multiplying with a feasible scaling factor. Simulation result demonstrates that robustness is achieved by recovering satisfactory watermark data from the reconstructed cover image after applying common geometric transformation attacks (such as rotation, flip operation, cropping, scaling, shearing and deletion of lines or columns operation), common enhancement technique attacks (such as low-pass filtering, histogram equalization, sharpening, gamma correction, noise addition) and jpeg compression attacks.