Cargando…

Comparison of computational methods for Hi-C data analysis

Hi-C is a genome-wide sequencing technique to investigate the 3D chromatin conformation inside the nucleus. The most studied structures that can be identified from Hi-C - chromatin interactions and topologically associating domains (TADs) - require computational methods to analyze genome-wide contac...

Descripción completa

Detalles Bibliográficos
Autores principales: Forcato, Mattia, Nicoletti, Chiara, Pal, Koustav, Livi, Carmen Maria, Ferrari, Francesco, Bicciato, Silvio
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5493985/
https://www.ncbi.nlm.nih.gov/pubmed/28604721
http://dx.doi.org/10.1038/nmeth.4325
Descripción
Sumario:Hi-C is a genome-wide sequencing technique to investigate the 3D chromatin conformation inside the nucleus. The most studied structures that can be identified from Hi-C - chromatin interactions and topologically associating domains (TADs) - require computational methods to analyze genome-wide contact probability maps. We quantitatively compared the performances of 13 algorithms for the analysis of Hi-C data from 6 landmark studies and simulations. The comparison revealed clear differences in the performances of methods to identify chromatin interactions and more comparable results of algorithms for TAD detection.