Cargando…
Comparison of computational methods for Hi-C data analysis
Hi-C is a genome-wide sequencing technique to investigate the 3D chromatin conformation inside the nucleus. The most studied structures that can be identified from Hi-C - chromatin interactions and topologically associating domains (TADs) - require computational methods to analyze genome-wide contac...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5493985/ https://www.ncbi.nlm.nih.gov/pubmed/28604721 http://dx.doi.org/10.1038/nmeth.4325 |
_version_ | 1783247601760468992 |
---|---|
author | Forcato, Mattia Nicoletti, Chiara Pal, Koustav Livi, Carmen Maria Ferrari, Francesco Bicciato, Silvio |
author_facet | Forcato, Mattia Nicoletti, Chiara Pal, Koustav Livi, Carmen Maria Ferrari, Francesco Bicciato, Silvio |
author_sort | Forcato, Mattia |
collection | PubMed |
description | Hi-C is a genome-wide sequencing technique to investigate the 3D chromatin conformation inside the nucleus. The most studied structures that can be identified from Hi-C - chromatin interactions and topologically associating domains (TADs) - require computational methods to analyze genome-wide contact probability maps. We quantitatively compared the performances of 13 algorithms for the analysis of Hi-C data from 6 landmark studies and simulations. The comparison revealed clear differences in the performances of methods to identify chromatin interactions and more comparable results of algorithms for TAD detection. |
format | Online Article Text |
id | pubmed-5493985 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
record_format | MEDLINE/PubMed |
spelling | pubmed-54939852017-12-12 Comparison of computational methods for Hi-C data analysis Forcato, Mattia Nicoletti, Chiara Pal, Koustav Livi, Carmen Maria Ferrari, Francesco Bicciato, Silvio Nat Methods Article Hi-C is a genome-wide sequencing technique to investigate the 3D chromatin conformation inside the nucleus. The most studied structures that can be identified from Hi-C - chromatin interactions and topologically associating domains (TADs) - require computational methods to analyze genome-wide contact probability maps. We quantitatively compared the performances of 13 algorithms for the analysis of Hi-C data from 6 landmark studies and simulations. The comparison revealed clear differences in the performances of methods to identify chromatin interactions and more comparable results of algorithms for TAD detection. 2017-06-12 2017-07 /pmc/articles/PMC5493985/ /pubmed/28604721 http://dx.doi.org/10.1038/nmeth.4325 Text en Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms |
spellingShingle | Article Forcato, Mattia Nicoletti, Chiara Pal, Koustav Livi, Carmen Maria Ferrari, Francesco Bicciato, Silvio Comparison of computational methods for Hi-C data analysis |
title | Comparison of computational methods for Hi-C data analysis |
title_full | Comparison of computational methods for Hi-C data analysis |
title_fullStr | Comparison of computational methods for Hi-C data analysis |
title_full_unstemmed | Comparison of computational methods for Hi-C data analysis |
title_short | Comparison of computational methods for Hi-C data analysis |
title_sort | comparison of computational methods for hi-c data analysis |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5493985/ https://www.ncbi.nlm.nih.gov/pubmed/28604721 http://dx.doi.org/10.1038/nmeth.4325 |
work_keys_str_mv | AT forcatomattia comparisonofcomputationalmethodsforhicdataanalysis AT nicolettichiara comparisonofcomputationalmethodsforhicdataanalysis AT palkoustav comparisonofcomputationalmethodsforhicdataanalysis AT livicarmenmaria comparisonofcomputationalmethodsforhicdataanalysis AT ferrarifrancesco comparisonofcomputationalmethodsforhicdataanalysis AT bicciatosilvio comparisonofcomputationalmethodsforhicdataanalysis |