Cargando…

Comparison of computational methods for Hi-C data analysis

Hi-C is a genome-wide sequencing technique to investigate the 3D chromatin conformation inside the nucleus. The most studied structures that can be identified from Hi-C - chromatin interactions and topologically associating domains (TADs) - require computational methods to analyze genome-wide contac...

Descripción completa

Detalles Bibliográficos
Autores principales: Forcato, Mattia, Nicoletti, Chiara, Pal, Koustav, Livi, Carmen Maria, Ferrari, Francesco, Bicciato, Silvio
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5493985/
https://www.ncbi.nlm.nih.gov/pubmed/28604721
http://dx.doi.org/10.1038/nmeth.4325
_version_ 1783247601760468992
author Forcato, Mattia
Nicoletti, Chiara
Pal, Koustav
Livi, Carmen Maria
Ferrari, Francesco
Bicciato, Silvio
author_facet Forcato, Mattia
Nicoletti, Chiara
Pal, Koustav
Livi, Carmen Maria
Ferrari, Francesco
Bicciato, Silvio
author_sort Forcato, Mattia
collection PubMed
description Hi-C is a genome-wide sequencing technique to investigate the 3D chromatin conformation inside the nucleus. The most studied structures that can be identified from Hi-C - chromatin interactions and topologically associating domains (TADs) - require computational methods to analyze genome-wide contact probability maps. We quantitatively compared the performances of 13 algorithms for the analysis of Hi-C data from 6 landmark studies and simulations. The comparison revealed clear differences in the performances of methods to identify chromatin interactions and more comparable results of algorithms for TAD detection.
format Online
Article
Text
id pubmed-5493985
institution National Center for Biotechnology Information
language English
publishDate 2017
record_format MEDLINE/PubMed
spelling pubmed-54939852017-12-12 Comparison of computational methods for Hi-C data analysis Forcato, Mattia Nicoletti, Chiara Pal, Koustav Livi, Carmen Maria Ferrari, Francesco Bicciato, Silvio Nat Methods Article Hi-C is a genome-wide sequencing technique to investigate the 3D chromatin conformation inside the nucleus. The most studied structures that can be identified from Hi-C - chromatin interactions and topologically associating domains (TADs) - require computational methods to analyze genome-wide contact probability maps. We quantitatively compared the performances of 13 algorithms for the analysis of Hi-C data from 6 landmark studies and simulations. The comparison revealed clear differences in the performances of methods to identify chromatin interactions and more comparable results of algorithms for TAD detection. 2017-06-12 2017-07 /pmc/articles/PMC5493985/ /pubmed/28604721 http://dx.doi.org/10.1038/nmeth.4325 Text en Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms
spellingShingle Article
Forcato, Mattia
Nicoletti, Chiara
Pal, Koustav
Livi, Carmen Maria
Ferrari, Francesco
Bicciato, Silvio
Comparison of computational methods for Hi-C data analysis
title Comparison of computational methods for Hi-C data analysis
title_full Comparison of computational methods for Hi-C data analysis
title_fullStr Comparison of computational methods for Hi-C data analysis
title_full_unstemmed Comparison of computational methods for Hi-C data analysis
title_short Comparison of computational methods for Hi-C data analysis
title_sort comparison of computational methods for hi-c data analysis
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5493985/
https://www.ncbi.nlm.nih.gov/pubmed/28604721
http://dx.doi.org/10.1038/nmeth.4325
work_keys_str_mv AT forcatomattia comparisonofcomputationalmethodsforhicdataanalysis
AT nicolettichiara comparisonofcomputationalmethodsforhicdataanalysis
AT palkoustav comparisonofcomputationalmethodsforhicdataanalysis
AT livicarmenmaria comparisonofcomputationalmethodsforhicdataanalysis
AT ferrarifrancesco comparisonofcomputationalmethodsforhicdataanalysis
AT bicciatosilvio comparisonofcomputationalmethodsforhicdataanalysis