Cargando…

Silencing of FABP1 ameliorates hepatic steatosis, inflammation, and oxidative stress in mice with nonalcoholic fatty liver disease

Nonalcoholic fatty liver disease (NAFLD) is increasing in prevalence worldwide and has been identified as a risk factor for cirrhosis and hepatocellular carcinoma. However, there is no effective pharmacologic treatment for NAFLD. FABP1 is a liver‐specific fatty acid‐binding protein (FABP) that plays...

Descripción completa

Detalles Bibliográficos
Autores principales: Mukai, Takako, Egawa, Miki, Takeuchi, Tamaki, Yamashita, Hitoshi, Kusudo, Tatsuya
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5494302/
https://www.ncbi.nlm.nih.gov/pubmed/28680813
http://dx.doi.org/10.1002/2211-5463.12240
Descripción
Sumario:Nonalcoholic fatty liver disease (NAFLD) is increasing in prevalence worldwide and has been identified as a risk factor for cirrhosis and hepatocellular carcinoma. However, there is no effective pharmacologic treatment for NAFLD. FABP1 is a liver‐specific fatty acid‐binding protein (FABP) that plays important roles in intracellular lipid metabolism in the liver. We investigated the effect of repression of FABP1 expression on NAFLD, using adenovirus‐mediated silencing of FABP1. FABP1 knockdown in the liver decreased the liver weight and hepatic triglyceride (TG) accumulation. The expression of inflammatory and oxidative stress markers in the liver was also reduced. The level of thiobarbituric acid‐reactive substances, a marker of lipid peroxidation, in the liver of FABP1 knockdown mice was significantly decreased. These results suggest that FABP1 reduction in the liver is an effective approach against NAFLD.