Cargando…
Can Human Embryonic Stem Cell-Derived Stromal Cells Serve a Starting Material for Myoblasts?
A large number of myocytes are necessary to treat intractable muscular disorders such as Duchenne muscular dystrophy with cell-based therapies. However, starting materials for cellular therapy products such as myoblasts, marrow stromal cells, menstrual blood-derived cells, and placenta-derived cells...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5494578/ https://www.ncbi.nlm.nih.gov/pubmed/28706537 http://dx.doi.org/10.1155/2017/7541734 |
Sumario: | A large number of myocytes are necessary to treat intractable muscular disorders such as Duchenne muscular dystrophy with cell-based therapies. However, starting materials for cellular therapy products such as myoblasts, marrow stromal cells, menstrual blood-derived cells, and placenta-derived cells have a limited lifespan and cease to proliferate in vitro. From the viewpoints of manufacturing and quality control, cells with a long lifespan are more suitable as a starting material. In this study, we generated stromal cells for future myoblast therapy from a working cell bank of human embryonic stem cells (ESCs). The ESC-derived CD105(+) cells with extensive in vitro proliferation capability exhibited myogenesis and genetic stability in vitro. These results imply that ESC-derived CD105(+) cells are another cell source for myoblasts in cell-based therapy for patients with genetic muscular disorders. Since ESCs are immortal, mesenchymal stromal cells generated from ESCs can be manufactured at a large scale in one lot for pharmaceutical purposes. |
---|