Cargando…
Automatic Detection of Epilepsy and Seizure Using Multiclass Sparse Extreme Learning Machine Classification
An automatic detection system for distinguishing normal, ictal, and interictal electroencephalogram (EEG) signals is of great help in clinical practice. This paper presents a three-class classification system based on discrete wavelet transform (DWT) and the nonlinear sparse extreme learning machine...
Autores principales: | Wang, Yuanfa, Li, Zunchao, Feng, Lichen, Zheng, Chuang, Zhang, Wenhao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5494790/ https://www.ncbi.nlm.nih.gov/pubmed/28706561 http://dx.doi.org/10.1155/2017/6849360 |
Ejemplares similares
-
Robust Sparse Representation and Multiclass Support Matrix Machines for the Classification of Motor Imagery EEG Signals
Publicado: (2019) -
Multiclass Skin Lesion Classification Using Hybrid Deep Features Selection and Extreme Learning Machine
por: Afza, Farhat, et al.
Publicado: (2022) -
Sparse Representation-Based Extreme Learning Machine for Motor Imagery EEG Classification
por: She, Qingshan, et al.
Publicado: (2018) -
A Deep Learning Approach for Automatic Seizure Detection in Children With Epilepsy
por: Abdelhameed, Ahmed, et al.
Publicado: (2021) -
Multi-Ideology, Multiclass Online Extremism Dataset, and Its Evaluation Using Machine Learning
por: Gaikwad, Mayur, et al.
Publicado: (2023)