Cargando…
It’s positive to be negative: Achilles tendon work loops during human locomotion
Ultrasound imaging is increasingly used with motion and force data to quantify tendon dynamics during human movement. Frequently, tendon dynamics are estimated indirectly from muscle fascicle kinematics (by subtracting muscle from muscle-tendon unit length), but there is mounting evidence that this...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5495204/ https://www.ncbi.nlm.nih.gov/pubmed/28671955 http://dx.doi.org/10.1371/journal.pone.0179976 |
_version_ | 1783247769836716032 |
---|---|
author | Zelik, Karl E. Franz, Jason R. |
author_facet | Zelik, Karl E. Franz, Jason R. |
author_sort | Zelik, Karl E. |
collection | PubMed |
description | Ultrasound imaging is increasingly used with motion and force data to quantify tendon dynamics during human movement. Frequently, tendon dynamics are estimated indirectly from muscle fascicle kinematics (by subtracting muscle from muscle-tendon unit length), but there is mounting evidence that this Indirect approach yields implausible tendon work loops. Since tendons are passive viscoelastic structures, when they undergo a loading-unloading cycle they must exhibit a negative work loop (i.e., perform net negative work). However, prior studies using this Indirect approach report large positive work loops, often estimating that tendons return 2–5 J of elastic energy for every 1 J of energy stored. More direct ultrasound estimates of tendon kinematics have emerged that quantify tendon elongations by tracking either the muscle-tendon junction or localized tendon tissue. However, it is unclear if these yield more plausible estimates of tendon dynamics. Our objective was to compute tendon work loops and hysteresis losses using these two Direct tendon kinematics estimates during human walking. We found that Direct estimates generally resulted in negative work loops, with average tendon hysteresis losses of 2–11% at 1.25 m/s and 33–49% at 0.75 m/s (N = 8), alluding to 0.51–0.98 J of tendon energy returned for every 1 J stored. We interpret this finding to suggest that Direct approaches provide more plausible estimates than the Indirect approach, and may be preferable for understanding tendon energy storage and return. However, the Direct approaches did exhibit speed-dependent trends that are not consistent with isolated, in vitro tendon hysteresis losses of about 5–10%. These trends suggest that Direct estimates also contain some level of error, albeit much smaller than Indirect estimates. Overall, this study serves to highlight the complexity and difficulty of estimating tendon dynamics non-invasively, and the care that must be taken to interpret biological function from current ultrasound-based estimates. |
format | Online Article Text |
id | pubmed-5495204 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-54952042017-07-18 It’s positive to be negative: Achilles tendon work loops during human locomotion Zelik, Karl E. Franz, Jason R. PLoS One Research Article Ultrasound imaging is increasingly used with motion and force data to quantify tendon dynamics during human movement. Frequently, tendon dynamics are estimated indirectly from muscle fascicle kinematics (by subtracting muscle from muscle-tendon unit length), but there is mounting evidence that this Indirect approach yields implausible tendon work loops. Since tendons are passive viscoelastic structures, when they undergo a loading-unloading cycle they must exhibit a negative work loop (i.e., perform net negative work). However, prior studies using this Indirect approach report large positive work loops, often estimating that tendons return 2–5 J of elastic energy for every 1 J of energy stored. More direct ultrasound estimates of tendon kinematics have emerged that quantify tendon elongations by tracking either the muscle-tendon junction or localized tendon tissue. However, it is unclear if these yield more plausible estimates of tendon dynamics. Our objective was to compute tendon work loops and hysteresis losses using these two Direct tendon kinematics estimates during human walking. We found that Direct estimates generally resulted in negative work loops, with average tendon hysteresis losses of 2–11% at 1.25 m/s and 33–49% at 0.75 m/s (N = 8), alluding to 0.51–0.98 J of tendon energy returned for every 1 J stored. We interpret this finding to suggest that Direct approaches provide more plausible estimates than the Indirect approach, and may be preferable for understanding tendon energy storage and return. However, the Direct approaches did exhibit speed-dependent trends that are not consistent with isolated, in vitro tendon hysteresis losses of about 5–10%. These trends suggest that Direct estimates also contain some level of error, albeit much smaller than Indirect estimates. Overall, this study serves to highlight the complexity and difficulty of estimating tendon dynamics non-invasively, and the care that must be taken to interpret biological function from current ultrasound-based estimates. Public Library of Science 2017-07-03 /pmc/articles/PMC5495204/ /pubmed/28671955 http://dx.doi.org/10.1371/journal.pone.0179976 Text en © 2017 Zelik, Franz http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Zelik, Karl E. Franz, Jason R. It’s positive to be negative: Achilles tendon work loops during human locomotion |
title | It’s positive to be negative: Achilles tendon work loops during human locomotion |
title_full | It’s positive to be negative: Achilles tendon work loops during human locomotion |
title_fullStr | It’s positive to be negative: Achilles tendon work loops during human locomotion |
title_full_unstemmed | It’s positive to be negative: Achilles tendon work loops during human locomotion |
title_short | It’s positive to be negative: Achilles tendon work loops during human locomotion |
title_sort | it’s positive to be negative: achilles tendon work loops during human locomotion |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5495204/ https://www.ncbi.nlm.nih.gov/pubmed/28671955 http://dx.doi.org/10.1371/journal.pone.0179976 |
work_keys_str_mv | AT zelikkarle itspositivetobenegativeachillestendonworkloopsduringhumanlocomotion AT franzjasonr itspositivetobenegativeachillestendonworkloopsduringhumanlocomotion |