Cargando…
Improving biodiversity assessment via unsupervised separation of biological sounds from long-duration recordings
Investigating the dynamics of biodiversity via passive acoustic monitoring is a challenging task, owing to the difficulty of identifying different animal vocalizations. Several indices have been proposed to measure acoustic complexity and to predict biodiversity. Although these indices perform well...
Autores principales: | Lin, Tzu-Hao, Fang, Shih-Hua, Tsao, Yu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5495775/ https://www.ncbi.nlm.nih.gov/pubmed/28674439 http://dx.doi.org/10.1038/s41598-017-04790-7 |
Ejemplares similares
-
Subcortical coding of predictable and unsupervised sound-context associations
por: Chen, Chi, et al.
Publicado: (2023) -
Sound frequency dependence of duration mismatch negativity recorded from awake rats
por: Inaba, Hiroyoshi, et al.
Publicado: (2019) -
Sound and recording
por: Rumsey, Francis, et al.
Publicado: (2009) -
Automatic large-scale classification of bird sounds is strongly improved by unsupervised feature learning
por: Stowell, Dan, et al.
Publicado: (2014) -
Sound and recording: an introduction
por: Rumsey, Francis
Publicado: (2005)