Cargando…
What Are People Tweeting About Zika? An Exploratory Study Concerning Its Symptoms, Treatment, Transmission, and Prevention
BACKGROUND: In order to harness what people are tweeting about Zika, there needs to be a computational framework that leverages machine learning techniques to recognize relevant Zika tweets and, further, categorize these into disease-specific categories to address specific societal concerns related...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5495967/ https://www.ncbi.nlm.nih.gov/pubmed/28630032 http://dx.doi.org/10.2196/publichealth.7157 |
_version_ | 1783247878163005440 |
---|---|
author | Miller, Michele Banerjee, Tanvi Muppalla, Roopteja Romine, William Sheth, Amit |
author_facet | Miller, Michele Banerjee, Tanvi Muppalla, Roopteja Romine, William Sheth, Amit |
author_sort | Miller, Michele |
collection | PubMed |
description | BACKGROUND: In order to harness what people are tweeting about Zika, there needs to be a computational framework that leverages machine learning techniques to recognize relevant Zika tweets and, further, categorize these into disease-specific categories to address specific societal concerns related to the prevention, transmission, symptoms, and treatment of Zika virus. OBJECTIVE: The purpose of this study was to determine the relevancy of the tweets and what people were tweeting about the 4 disease characteristics of Zika: symptoms, transmission, prevention, and treatment. METHODS: A combination of natural language processing and machine learning techniques was used to determine what people were tweeting about Zika. Specifically, a two-stage classifier system was built to find relevant tweets about Zika, and then the tweets were categorized into 4 disease categories. Tweets in each disease category were then examined using latent Dirichlet allocation (LDA) to determine the 5 main tweet topics for each disease characteristic. RESULTS: Over 4 months, 1,234,605 tweets were collected. The number of tweets by males and females was similar (28.47% [351,453/1,234,605] and 23.02% [284,207/1,234,605], respectively). The classifier performed well on the training and test data for relevancy (F1 score=0.87 and 0.99, respectively) and disease characteristics (F1 score=0.79 and 0.90, respectively). Five topics for each category were found and discussed, with a focus on the symptoms category. CONCLUSIONS: We demonstrate how categories of discussion on Twitter about an epidemic can be discovered so that public health officials can understand specific societal concerns within the disease-specific categories. Our two-stage classifier was able to identify relevant tweets to enable more specific analysis, including the specific aspects of Zika that were being discussed as well as misinformation being expressed. Future studies can capture sentiments and opinions on epidemic outbreaks like Zika virus in real time, which will likely inform efforts to educate the public at large. |
format | Online Article Text |
id | pubmed-5495967 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | JMIR Publications |
record_format | MEDLINE/PubMed |
spelling | pubmed-54959672017-07-11 What Are People Tweeting About Zika? An Exploratory Study Concerning Its Symptoms, Treatment, Transmission, and Prevention Miller, Michele Banerjee, Tanvi Muppalla, Roopteja Romine, William Sheth, Amit JMIR Public Health Surveill Original Paper BACKGROUND: In order to harness what people are tweeting about Zika, there needs to be a computational framework that leverages machine learning techniques to recognize relevant Zika tweets and, further, categorize these into disease-specific categories to address specific societal concerns related to the prevention, transmission, symptoms, and treatment of Zika virus. OBJECTIVE: The purpose of this study was to determine the relevancy of the tweets and what people were tweeting about the 4 disease characteristics of Zika: symptoms, transmission, prevention, and treatment. METHODS: A combination of natural language processing and machine learning techniques was used to determine what people were tweeting about Zika. Specifically, a two-stage classifier system was built to find relevant tweets about Zika, and then the tweets were categorized into 4 disease categories. Tweets in each disease category were then examined using latent Dirichlet allocation (LDA) to determine the 5 main tweet topics for each disease characteristic. RESULTS: Over 4 months, 1,234,605 tweets were collected. The number of tweets by males and females was similar (28.47% [351,453/1,234,605] and 23.02% [284,207/1,234,605], respectively). The classifier performed well on the training and test data for relevancy (F1 score=0.87 and 0.99, respectively) and disease characteristics (F1 score=0.79 and 0.90, respectively). Five topics for each category were found and discussed, with a focus on the symptoms category. CONCLUSIONS: We demonstrate how categories of discussion on Twitter about an epidemic can be discovered so that public health officials can understand specific societal concerns within the disease-specific categories. Our two-stage classifier was able to identify relevant tweets to enable more specific analysis, including the specific aspects of Zika that were being discussed as well as misinformation being expressed. Future studies can capture sentiments and opinions on epidemic outbreaks like Zika virus in real time, which will likely inform efforts to educate the public at large. JMIR Publications 2017-06-19 /pmc/articles/PMC5495967/ /pubmed/28630032 http://dx.doi.org/10.2196/publichealth.7157 Text en ©Michele Miller, Tanvi Banerjee, Roopteja Muppalla, William Romine, Amit Sheth. Originally published in JMIR Public Health and Surveillance (http://publichealth.jmir.org), 19.06.2017. https://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Public Health and Surveillance, is properly cited. The complete bibliographic information, a link to the original publication on http://publichealth.jmir.org, as well as this copyright and license information must be included. |
spellingShingle | Original Paper Miller, Michele Banerjee, Tanvi Muppalla, Roopteja Romine, William Sheth, Amit What Are People Tweeting About Zika? An Exploratory Study Concerning Its Symptoms, Treatment, Transmission, and Prevention |
title | What Are People Tweeting About Zika? An Exploratory Study Concerning Its Symptoms, Treatment, Transmission, and Prevention |
title_full | What Are People Tweeting About Zika? An Exploratory Study Concerning Its Symptoms, Treatment, Transmission, and Prevention |
title_fullStr | What Are People Tweeting About Zika? An Exploratory Study Concerning Its Symptoms, Treatment, Transmission, and Prevention |
title_full_unstemmed | What Are People Tweeting About Zika? An Exploratory Study Concerning Its Symptoms, Treatment, Transmission, and Prevention |
title_short | What Are People Tweeting About Zika? An Exploratory Study Concerning Its Symptoms, Treatment, Transmission, and Prevention |
title_sort | what are people tweeting about zika? an exploratory study concerning its symptoms, treatment, transmission, and prevention |
topic | Original Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5495967/ https://www.ncbi.nlm.nih.gov/pubmed/28630032 http://dx.doi.org/10.2196/publichealth.7157 |
work_keys_str_mv | AT millermichele whatarepeopletweetingaboutzikaanexploratorystudyconcerningitssymptomstreatmenttransmissionandprevention AT banerjeetanvi whatarepeopletweetingaboutzikaanexploratorystudyconcerningitssymptomstreatmenttransmissionandprevention AT muppallaroopteja whatarepeopletweetingaboutzikaanexploratorystudyconcerningitssymptomstreatmenttransmissionandprevention AT rominewilliam whatarepeopletweetingaboutzikaanexploratorystudyconcerningitssymptomstreatmenttransmissionandprevention AT shethamit whatarepeopletweetingaboutzikaanexploratorystudyconcerningitssymptomstreatmenttransmissionandprevention |