Cargando…
Generation of megahertz-band spin currents using nonlinear spin pumping
Spin pumping enables the generation of d.c. and gigahertz-band (GHz-band) voltages from an applied microwave via magnetization dynamics when combined with inverse spin Hall effects. However, generating such voltages in the in-between frequency region, or the megahertz (MHz) band, has been difficult...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5496877/ https://www.ncbi.nlm.nih.gov/pubmed/28676629 http://dx.doi.org/10.1038/s41598-017-04901-4 |
Sumario: | Spin pumping enables the generation of d.c. and gigahertz-band (GHz-band) voltages from an applied microwave via magnetization dynamics when combined with inverse spin Hall effects. However, generating such voltages in the in-between frequency region, or the megahertz (MHz) band, has been difficult since ferromagnetic resonance usually occurs in the GHz band. Here we show that in spite of GHz-band microwaves applied, MHz-band voltages can be generated by spin pumping with use of nonlinear magnetization dynamics in Y(3)Fe(5)O(12). The mechanism is ascribed to the MHz-band oscillation of the amplitude of the magnetization precession, which is projected onto a rectified voltage component via spin pumping. The present finding could be useful for frequency down-conversion thanks to the simple and durable structure, continuous-wave operation, and the tunability of an output frequency with low magnetic fields. |
---|