Cargando…
An intersectional gene regulatory strategy defines subclass diversity of C. elegans motor neurons
A core principle of nervous system organization is the diversification of neuron classes into subclasses that share large sets of features but differ in select traits. We describe here a molecular mechanism necessary for motor neurons to acquire subclass-specific traits in the nematode Caenorhabditi...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
eLife Sciences Publications, Ltd
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5498135/ https://www.ncbi.nlm.nih.gov/pubmed/28677525 http://dx.doi.org/10.7554/eLife.25751 |
_version_ | 1783248262187188224 |
---|---|
author | Kratsios, Paschalis Kerk, Sze Yen Catela, Catarina Liang, Joseph Vidal, Berta Bayer, Emily A Feng, Weidong De La Cruz, Estanisla Daniel Croci, Laura Consalez, G Giacomo Mizumoto, Kota Hobert, Oliver |
author_facet | Kratsios, Paschalis Kerk, Sze Yen Catela, Catarina Liang, Joseph Vidal, Berta Bayer, Emily A Feng, Weidong De La Cruz, Estanisla Daniel Croci, Laura Consalez, G Giacomo Mizumoto, Kota Hobert, Oliver |
author_sort | Kratsios, Paschalis |
collection | PubMed |
description | A core principle of nervous system organization is the diversification of neuron classes into subclasses that share large sets of features but differ in select traits. We describe here a molecular mechanism necessary for motor neurons to acquire subclass-specific traits in the nematode Caenorhabditis elegans. Cholinergic motor neuron classes of the ventral nerve cord can be subdivided into subclasses along the anterior-posterior (A-P) axis based on synaptic connectivity patterns and molecular features. The conserved COE-type terminal selector UNC-3 not only controls the expression of traits shared by all members of a neuron class, but is also required for subclass-specific traits expressed along the A-P axis. UNC-3, which is not regionally restricted, requires region-specific cofactors in the form of Hox proteins to co-activate subclass-specific effector genes in post-mitotic motor neurons. This intersectional gene regulatory principle for neuronal subclass diversification may be conserved from nematodes to mice. DOI: http://dx.doi.org/10.7554/eLife.25751.001 |
format | Online Article Text |
id | pubmed-5498135 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | eLife Sciences Publications, Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-54981352017-07-06 An intersectional gene regulatory strategy defines subclass diversity of C. elegans motor neurons Kratsios, Paschalis Kerk, Sze Yen Catela, Catarina Liang, Joseph Vidal, Berta Bayer, Emily A Feng, Weidong De La Cruz, Estanisla Daniel Croci, Laura Consalez, G Giacomo Mizumoto, Kota Hobert, Oliver eLife Neuroscience A core principle of nervous system organization is the diversification of neuron classes into subclasses that share large sets of features but differ in select traits. We describe here a molecular mechanism necessary for motor neurons to acquire subclass-specific traits in the nematode Caenorhabditis elegans. Cholinergic motor neuron classes of the ventral nerve cord can be subdivided into subclasses along the anterior-posterior (A-P) axis based on synaptic connectivity patterns and molecular features. The conserved COE-type terminal selector UNC-3 not only controls the expression of traits shared by all members of a neuron class, but is also required for subclass-specific traits expressed along the A-P axis. UNC-3, which is not regionally restricted, requires region-specific cofactors in the form of Hox proteins to co-activate subclass-specific effector genes in post-mitotic motor neurons. This intersectional gene regulatory principle for neuronal subclass diversification may be conserved from nematodes to mice. DOI: http://dx.doi.org/10.7554/eLife.25751.001 eLife Sciences Publications, Ltd 2017-07-05 /pmc/articles/PMC5498135/ /pubmed/28677525 http://dx.doi.org/10.7554/eLife.25751 Text en © 2017, Kratsios et al http://creativecommons.org/licenses/by/4.0/ This article is distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use and redistribution provided that the original author and source are credited. |
spellingShingle | Neuroscience Kratsios, Paschalis Kerk, Sze Yen Catela, Catarina Liang, Joseph Vidal, Berta Bayer, Emily A Feng, Weidong De La Cruz, Estanisla Daniel Croci, Laura Consalez, G Giacomo Mizumoto, Kota Hobert, Oliver An intersectional gene regulatory strategy defines subclass diversity of C. elegans motor neurons |
title | An intersectional gene regulatory strategy defines subclass diversity of C. elegans motor neurons |
title_full | An intersectional gene regulatory strategy defines subclass diversity of C. elegans motor neurons |
title_fullStr | An intersectional gene regulatory strategy defines subclass diversity of C. elegans motor neurons |
title_full_unstemmed | An intersectional gene regulatory strategy defines subclass diversity of C. elegans motor neurons |
title_short | An intersectional gene regulatory strategy defines subclass diversity of C. elegans motor neurons |
title_sort | intersectional gene regulatory strategy defines subclass diversity of c. elegans motor neurons |
topic | Neuroscience |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5498135/ https://www.ncbi.nlm.nih.gov/pubmed/28677525 http://dx.doi.org/10.7554/eLife.25751 |
work_keys_str_mv | AT kratsiospaschalis anintersectionalgeneregulatorystrategydefinessubclassdiversityofcelegansmotorneurons AT kerkszeyen anintersectionalgeneregulatorystrategydefinessubclassdiversityofcelegansmotorneurons AT catelacatarina anintersectionalgeneregulatorystrategydefinessubclassdiversityofcelegansmotorneurons AT liangjoseph anintersectionalgeneregulatorystrategydefinessubclassdiversityofcelegansmotorneurons AT vidalberta anintersectionalgeneregulatorystrategydefinessubclassdiversityofcelegansmotorneurons AT bayeremilya anintersectionalgeneregulatorystrategydefinessubclassdiversityofcelegansmotorneurons AT fengweidong anintersectionalgeneregulatorystrategydefinessubclassdiversityofcelegansmotorneurons AT delacruzestanisladaniel anintersectionalgeneregulatorystrategydefinessubclassdiversityofcelegansmotorneurons AT crocilaura anintersectionalgeneregulatorystrategydefinessubclassdiversityofcelegansmotorneurons AT consalezggiacomo anintersectionalgeneregulatorystrategydefinessubclassdiversityofcelegansmotorneurons AT mizumotokota anintersectionalgeneregulatorystrategydefinessubclassdiversityofcelegansmotorneurons AT hobertoliver anintersectionalgeneregulatorystrategydefinessubclassdiversityofcelegansmotorneurons AT kratsiospaschalis intersectionalgeneregulatorystrategydefinessubclassdiversityofcelegansmotorneurons AT kerkszeyen intersectionalgeneregulatorystrategydefinessubclassdiversityofcelegansmotorneurons AT catelacatarina intersectionalgeneregulatorystrategydefinessubclassdiversityofcelegansmotorneurons AT liangjoseph intersectionalgeneregulatorystrategydefinessubclassdiversityofcelegansmotorneurons AT vidalberta intersectionalgeneregulatorystrategydefinessubclassdiversityofcelegansmotorneurons AT bayeremilya intersectionalgeneregulatorystrategydefinessubclassdiversityofcelegansmotorneurons AT fengweidong intersectionalgeneregulatorystrategydefinessubclassdiversityofcelegansmotorneurons AT delacruzestanisladaniel intersectionalgeneregulatorystrategydefinessubclassdiversityofcelegansmotorneurons AT crocilaura intersectionalgeneregulatorystrategydefinessubclassdiversityofcelegansmotorneurons AT consalezggiacomo intersectionalgeneregulatorystrategydefinessubclassdiversityofcelegansmotorneurons AT mizumotokota intersectionalgeneregulatorystrategydefinessubclassdiversityofcelegansmotorneurons AT hobertoliver intersectionalgeneregulatorystrategydefinessubclassdiversityofcelegansmotorneurons |