Cargando…

An intersectional gene regulatory strategy defines subclass diversity of C. elegans motor neurons

A core principle of nervous system organization is the diversification of neuron classes into subclasses that share large sets of features but differ in select traits. We describe here a molecular mechanism necessary for motor neurons to acquire subclass-specific traits in the nematode Caenorhabditi...

Descripción completa

Detalles Bibliográficos
Autores principales: Kratsios, Paschalis, Kerk, Sze Yen, Catela, Catarina, Liang, Joseph, Vidal, Berta, Bayer, Emily A, Feng, Weidong, De La Cruz, Estanisla Daniel, Croci, Laura, Consalez, G Giacomo, Mizumoto, Kota, Hobert, Oliver
Formato: Online Artículo Texto
Lenguaje:English
Publicado: eLife Sciences Publications, Ltd 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5498135/
https://www.ncbi.nlm.nih.gov/pubmed/28677525
http://dx.doi.org/10.7554/eLife.25751
_version_ 1783248262187188224
author Kratsios, Paschalis
Kerk, Sze Yen
Catela, Catarina
Liang, Joseph
Vidal, Berta
Bayer, Emily A
Feng, Weidong
De La Cruz, Estanisla Daniel
Croci, Laura
Consalez, G Giacomo
Mizumoto, Kota
Hobert, Oliver
author_facet Kratsios, Paschalis
Kerk, Sze Yen
Catela, Catarina
Liang, Joseph
Vidal, Berta
Bayer, Emily A
Feng, Weidong
De La Cruz, Estanisla Daniel
Croci, Laura
Consalez, G Giacomo
Mizumoto, Kota
Hobert, Oliver
author_sort Kratsios, Paschalis
collection PubMed
description A core principle of nervous system organization is the diversification of neuron classes into subclasses that share large sets of features but differ in select traits. We describe here a molecular mechanism necessary for motor neurons to acquire subclass-specific traits in the nematode Caenorhabditis elegans. Cholinergic motor neuron classes of the ventral nerve cord can be subdivided into subclasses along the anterior-posterior (A-P) axis based on synaptic connectivity patterns and molecular features. The conserved COE-type terminal selector UNC-3 not only controls the expression of traits shared by all members of a neuron class, but is also required for subclass-specific traits expressed along the A-P axis. UNC-3, which is not regionally restricted, requires region-specific cofactors in the form of Hox proteins to co-activate subclass-specific effector genes in post-mitotic motor neurons. This intersectional gene regulatory principle for neuronal subclass diversification may be conserved from nematodes to mice. DOI: http://dx.doi.org/10.7554/eLife.25751.001
format Online
Article
Text
id pubmed-5498135
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher eLife Sciences Publications, Ltd
record_format MEDLINE/PubMed
spelling pubmed-54981352017-07-06 An intersectional gene regulatory strategy defines subclass diversity of C. elegans motor neurons Kratsios, Paschalis Kerk, Sze Yen Catela, Catarina Liang, Joseph Vidal, Berta Bayer, Emily A Feng, Weidong De La Cruz, Estanisla Daniel Croci, Laura Consalez, G Giacomo Mizumoto, Kota Hobert, Oliver eLife Neuroscience A core principle of nervous system organization is the diversification of neuron classes into subclasses that share large sets of features but differ in select traits. We describe here a molecular mechanism necessary for motor neurons to acquire subclass-specific traits in the nematode Caenorhabditis elegans. Cholinergic motor neuron classes of the ventral nerve cord can be subdivided into subclasses along the anterior-posterior (A-P) axis based on synaptic connectivity patterns and molecular features. The conserved COE-type terminal selector UNC-3 not only controls the expression of traits shared by all members of a neuron class, but is also required for subclass-specific traits expressed along the A-P axis. UNC-3, which is not regionally restricted, requires region-specific cofactors in the form of Hox proteins to co-activate subclass-specific effector genes in post-mitotic motor neurons. This intersectional gene regulatory principle for neuronal subclass diversification may be conserved from nematodes to mice. DOI: http://dx.doi.org/10.7554/eLife.25751.001 eLife Sciences Publications, Ltd 2017-07-05 /pmc/articles/PMC5498135/ /pubmed/28677525 http://dx.doi.org/10.7554/eLife.25751 Text en © 2017, Kratsios et al http://creativecommons.org/licenses/by/4.0/ This article is distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use and redistribution provided that the original author and source are credited.
spellingShingle Neuroscience
Kratsios, Paschalis
Kerk, Sze Yen
Catela, Catarina
Liang, Joseph
Vidal, Berta
Bayer, Emily A
Feng, Weidong
De La Cruz, Estanisla Daniel
Croci, Laura
Consalez, G Giacomo
Mizumoto, Kota
Hobert, Oliver
An intersectional gene regulatory strategy defines subclass diversity of C. elegans motor neurons
title An intersectional gene regulatory strategy defines subclass diversity of C. elegans motor neurons
title_full An intersectional gene regulatory strategy defines subclass diversity of C. elegans motor neurons
title_fullStr An intersectional gene regulatory strategy defines subclass diversity of C. elegans motor neurons
title_full_unstemmed An intersectional gene regulatory strategy defines subclass diversity of C. elegans motor neurons
title_short An intersectional gene regulatory strategy defines subclass diversity of C. elegans motor neurons
title_sort intersectional gene regulatory strategy defines subclass diversity of c. elegans motor neurons
topic Neuroscience
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5498135/
https://www.ncbi.nlm.nih.gov/pubmed/28677525
http://dx.doi.org/10.7554/eLife.25751
work_keys_str_mv AT kratsiospaschalis anintersectionalgeneregulatorystrategydefinessubclassdiversityofcelegansmotorneurons
AT kerkszeyen anintersectionalgeneregulatorystrategydefinessubclassdiversityofcelegansmotorneurons
AT catelacatarina anintersectionalgeneregulatorystrategydefinessubclassdiversityofcelegansmotorneurons
AT liangjoseph anintersectionalgeneregulatorystrategydefinessubclassdiversityofcelegansmotorneurons
AT vidalberta anintersectionalgeneregulatorystrategydefinessubclassdiversityofcelegansmotorneurons
AT bayeremilya anintersectionalgeneregulatorystrategydefinessubclassdiversityofcelegansmotorneurons
AT fengweidong anintersectionalgeneregulatorystrategydefinessubclassdiversityofcelegansmotorneurons
AT delacruzestanisladaniel anintersectionalgeneregulatorystrategydefinessubclassdiversityofcelegansmotorneurons
AT crocilaura anintersectionalgeneregulatorystrategydefinessubclassdiversityofcelegansmotorneurons
AT consalezggiacomo anintersectionalgeneregulatorystrategydefinessubclassdiversityofcelegansmotorneurons
AT mizumotokota anintersectionalgeneregulatorystrategydefinessubclassdiversityofcelegansmotorneurons
AT hobertoliver anintersectionalgeneregulatorystrategydefinessubclassdiversityofcelegansmotorneurons
AT kratsiospaschalis intersectionalgeneregulatorystrategydefinessubclassdiversityofcelegansmotorneurons
AT kerkszeyen intersectionalgeneregulatorystrategydefinessubclassdiversityofcelegansmotorneurons
AT catelacatarina intersectionalgeneregulatorystrategydefinessubclassdiversityofcelegansmotorneurons
AT liangjoseph intersectionalgeneregulatorystrategydefinessubclassdiversityofcelegansmotorneurons
AT vidalberta intersectionalgeneregulatorystrategydefinessubclassdiversityofcelegansmotorneurons
AT bayeremilya intersectionalgeneregulatorystrategydefinessubclassdiversityofcelegansmotorneurons
AT fengweidong intersectionalgeneregulatorystrategydefinessubclassdiversityofcelegansmotorneurons
AT delacruzestanisladaniel intersectionalgeneregulatorystrategydefinessubclassdiversityofcelegansmotorneurons
AT crocilaura intersectionalgeneregulatorystrategydefinessubclassdiversityofcelegansmotorneurons
AT consalezggiacomo intersectionalgeneregulatorystrategydefinessubclassdiversityofcelegansmotorneurons
AT mizumotokota intersectionalgeneregulatorystrategydefinessubclassdiversityofcelegansmotorneurons
AT hobertoliver intersectionalgeneregulatorystrategydefinessubclassdiversityofcelegansmotorneurons