Cargando…
A Gene-Based Analysis of Acoustic Startle Latency
Latency of the acoustic startle response is the time required from the presentation of startling auditory stimulus until the startle response is elicited and provides an index of neural processing speed. Latency is prolonged in subjects with schizophrenia compared to controls in some but not all stu...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5498475/ https://www.ncbi.nlm.nih.gov/pubmed/28729842 http://dx.doi.org/10.3389/fpsyt.2017.00117 |
_version_ | 1783248296494497792 |
---|---|
author | Smith, Alicia K. Jovanovic, Tanja Kilaru, Varun Lori, Adriana Gensler, Lauren Lee, Samuel S. Norrholm, Seth Davin Massa, Nicholas Cuthbert, Bruce Bradley, Bekh Ressler, Kerry J. Duncan, Erica |
author_facet | Smith, Alicia K. Jovanovic, Tanja Kilaru, Varun Lori, Adriana Gensler, Lauren Lee, Samuel S. Norrholm, Seth Davin Massa, Nicholas Cuthbert, Bruce Bradley, Bekh Ressler, Kerry J. Duncan, Erica |
author_sort | Smith, Alicia K. |
collection | PubMed |
description | Latency of the acoustic startle response is the time required from the presentation of startling auditory stimulus until the startle response is elicited and provides an index of neural processing speed. Latency is prolonged in subjects with schizophrenia compared to controls in some but not all studies and is 68–90% heritable in baseline startle trials. In order to determine the genetic association with latency as a potential inroad into genetically based vulnerability to psychosis, we conducted a gene-based study of latency followed by an independent replication study of significant gene findings with a single-nucleotide polymorphism (SNP)-based analysis of schizophrenia and control subjects. 313 subjects from an urban population of low socioeconomic status with mixed psychiatric diagnoses were included in the gene-based study. Startle testing was conducted using a Biopac M150 system according to our published methods. Genotyping was performed with the Omni-Quad 1M or the Omni Express BeadChip. The replication study was conducted on 154 schizophrenia subjects and 123 psychiatric controls. Genetic analyses were conducted with Illumina Human Omni1-Quad and OmniExpress BeadChips. Twenty-nine SNPs were selected from four genes that were significant in the gene-based analysis and also associated with startle and/or schizophrenia in the literature. Linear regressions on latency were conducted, controlling for age, race, and diagnosis as a dichotomous variable. In the gene-based study, 2,870 genes demonstrated the evidence of association after correction for multiple comparisons (false discovery rate < 0.05). Pathway analysis of these genes revealed enrichment for relevant biological processes including neural transmission (p = 0.0029), synaptic transmission (p = 0.0032), and neuronal development (p = 0.024). The subsequent SNP-based replication analysis revealed a strong association of onset latency with the SNP rs901561 on the neuregulin gene (NRG1) in an additive model (beta = 0.21, p = 0.001), indicating that subjects with the AA and AG genotypes had slower mean latency than subjects with GG genotype. In conclusion, startle latency, a highly heritable measure that is slowed in schizophrenia, may be a useful biological probe for genetic contributions to psychotic disorders. Our analyses in two independent populations point to a significant prediction of startle latency by genetic variation in NRG1. |
format | Online Article Text |
id | pubmed-5498475 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-54984752017-07-20 A Gene-Based Analysis of Acoustic Startle Latency Smith, Alicia K. Jovanovic, Tanja Kilaru, Varun Lori, Adriana Gensler, Lauren Lee, Samuel S. Norrholm, Seth Davin Massa, Nicholas Cuthbert, Bruce Bradley, Bekh Ressler, Kerry J. Duncan, Erica Front Psychiatry Psychiatry Latency of the acoustic startle response is the time required from the presentation of startling auditory stimulus until the startle response is elicited and provides an index of neural processing speed. Latency is prolonged in subjects with schizophrenia compared to controls in some but not all studies and is 68–90% heritable in baseline startle trials. In order to determine the genetic association with latency as a potential inroad into genetically based vulnerability to psychosis, we conducted a gene-based study of latency followed by an independent replication study of significant gene findings with a single-nucleotide polymorphism (SNP)-based analysis of schizophrenia and control subjects. 313 subjects from an urban population of low socioeconomic status with mixed psychiatric diagnoses were included in the gene-based study. Startle testing was conducted using a Biopac M150 system according to our published methods. Genotyping was performed with the Omni-Quad 1M or the Omni Express BeadChip. The replication study was conducted on 154 schizophrenia subjects and 123 psychiatric controls. Genetic analyses were conducted with Illumina Human Omni1-Quad and OmniExpress BeadChips. Twenty-nine SNPs were selected from four genes that were significant in the gene-based analysis and also associated with startle and/or schizophrenia in the literature. Linear regressions on latency were conducted, controlling for age, race, and diagnosis as a dichotomous variable. In the gene-based study, 2,870 genes demonstrated the evidence of association after correction for multiple comparisons (false discovery rate < 0.05). Pathway analysis of these genes revealed enrichment for relevant biological processes including neural transmission (p = 0.0029), synaptic transmission (p = 0.0032), and neuronal development (p = 0.024). The subsequent SNP-based replication analysis revealed a strong association of onset latency with the SNP rs901561 on the neuregulin gene (NRG1) in an additive model (beta = 0.21, p = 0.001), indicating that subjects with the AA and AG genotypes had slower mean latency than subjects with GG genotype. In conclusion, startle latency, a highly heritable measure that is slowed in schizophrenia, may be a useful biological probe for genetic contributions to psychotic disorders. Our analyses in two independent populations point to a significant prediction of startle latency by genetic variation in NRG1. Frontiers Media S.A. 2017-07-06 /pmc/articles/PMC5498475/ /pubmed/28729842 http://dx.doi.org/10.3389/fpsyt.2017.00117 Text en Copyright © 2017 Smith, Jovanovic, Kilaru, Lori, Gensler, Lee, Norrholm, Massa, Cuthbert, Bradley, Ressler and Duncan. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Psychiatry Smith, Alicia K. Jovanovic, Tanja Kilaru, Varun Lori, Adriana Gensler, Lauren Lee, Samuel S. Norrholm, Seth Davin Massa, Nicholas Cuthbert, Bruce Bradley, Bekh Ressler, Kerry J. Duncan, Erica A Gene-Based Analysis of Acoustic Startle Latency |
title | A Gene-Based Analysis of Acoustic Startle Latency |
title_full | A Gene-Based Analysis of Acoustic Startle Latency |
title_fullStr | A Gene-Based Analysis of Acoustic Startle Latency |
title_full_unstemmed | A Gene-Based Analysis of Acoustic Startle Latency |
title_short | A Gene-Based Analysis of Acoustic Startle Latency |
title_sort | gene-based analysis of acoustic startle latency |
topic | Psychiatry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5498475/ https://www.ncbi.nlm.nih.gov/pubmed/28729842 http://dx.doi.org/10.3389/fpsyt.2017.00117 |
work_keys_str_mv | AT smithaliciak agenebasedanalysisofacousticstartlelatency AT jovanovictanja agenebasedanalysisofacousticstartlelatency AT kilaruvarun agenebasedanalysisofacousticstartlelatency AT loriadriana agenebasedanalysisofacousticstartlelatency AT genslerlauren agenebasedanalysisofacousticstartlelatency AT leesamuels agenebasedanalysisofacousticstartlelatency AT norrholmsethdavin agenebasedanalysisofacousticstartlelatency AT massanicholas agenebasedanalysisofacousticstartlelatency AT cuthbertbruce agenebasedanalysisofacousticstartlelatency AT bradleybekh agenebasedanalysisofacousticstartlelatency AT resslerkerryj agenebasedanalysisofacousticstartlelatency AT duncanerica agenebasedanalysisofacousticstartlelatency AT smithaliciak genebasedanalysisofacousticstartlelatency AT jovanovictanja genebasedanalysisofacousticstartlelatency AT kilaruvarun genebasedanalysisofacousticstartlelatency AT loriadriana genebasedanalysisofacousticstartlelatency AT genslerlauren genebasedanalysisofacousticstartlelatency AT leesamuels genebasedanalysisofacousticstartlelatency AT norrholmsethdavin genebasedanalysisofacousticstartlelatency AT massanicholas genebasedanalysisofacousticstartlelatency AT cuthbertbruce genebasedanalysisofacousticstartlelatency AT bradleybekh genebasedanalysisofacousticstartlelatency AT resslerkerryj genebasedanalysisofacousticstartlelatency AT duncanerica genebasedanalysisofacousticstartlelatency |