Cargando…

Facilitation of phosphorus uptake in maize plants by mycorrhizosphere bacteria

A major challenge for agriculture is to provide sufficient plant nutrients such as phosphorus (P) to meet the global food demand. The sufficiency of P is a concern because of it’s essential role in plant growth, the finite availability of P-rock for fertilizer production and the poor plant availabil...

Descripción completa

Detalles Bibliográficos
Autores principales: Battini, Fabio, Grønlund, Mette, Agnolucci, Monica, Giovannetti, Manuela, Jakobsen, Iver
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5498536/
https://www.ncbi.nlm.nih.gov/pubmed/28680077
http://dx.doi.org/10.1038/s41598-017-04959-0
Descripción
Sumario:A major challenge for agriculture is to provide sufficient plant nutrients such as phosphorus (P) to meet the global food demand. The sufficiency of P is a concern because of it’s essential role in plant growth, the finite availability of P-rock for fertilizer production and the poor plant availability of soil P. This study investigated whether biofertilizers and bioenhancers, such as arbuscular mycorrhizal fungi (AMF) and their associated bacteria could enhance growth and P uptake in maize. Plants were grown with or without mycorrhizas in compartmented pots with radioactive P tracers and were inoculated with each of 10 selected bacteria isolated from AMF spores. Root colonization by AMF produced large plant growth responses, while seven bacterial strains further facilitated root growth and P uptake by promoting the development of AMF extraradical mycelium. Among the tested strains, Streptomyces sp. W94 produced the largest increases in uptake and translocation of (33)P, while Streptomyces sp. W77 highly enhanced hyphal length specific uptake of (33)P. The positive relationship between AMF-mediated P absorption and shoot P content was significantly influenced by the bacteria inoculants and such results emphasize the potential importance of managing both AMF and their microbiota for improving P acquisition by crops.