Cargando…
A Novel Unsupervised Algorithm for Biological Process-based Analysis on Cancer
The aberrant alterations of biological functions are well known in tumorigenesis and cancer development. Hence, with advances in high-throughput sequencing technologies, capturing and quantifying the functional alterations in cancers based on expression profiles to explore cancer malignant process i...
Autores principales: | Song, Tianci, Cao, Sha, Tao, Sheng, Liang, Sen, Du, Wei, Liang, Yanchun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5498659/ https://www.ncbi.nlm.nih.gov/pubmed/28680165 http://dx.doi.org/10.1038/s41598-017-04961-6 |
Ejemplares similares
-
A feature selection method based on multiple kernel learning with expression profiles of different types
por: Du, Wei, et al.
Publicado: (2017) -
Computational Analysis of Specific MicroRNA Biomarkers for Noninvasive Early Cancer Detection
por: Song, Tianci, et al.
Publicado: (2017) -
Unsupervised learning algorithms
por: Celebi, M, et al.
Publicado: (2016) -
Unsupervised Monocular Depth Estimation Method Based on Uncertainty Analysis and Retinex Algorithm
por: Song, Chuanxue, et al.
Publicado: (2020) -
Unsupervised logic-based mechanism inference for network-driven biological processes
por: Prugger, Martina, et al.
Publicado: (2021)