Cargando…
Classification of caesarean section and normal vaginal deliveries using foetal heart rate signals and advanced machine learning algorithms
BACKGROUND: Visual inspection of cardiotocography traces by obstetricians and midwives is the gold standard for monitoring the wellbeing of the foetus during antenatal care. However, inter- and intra-observer variability is high with only a 30% positive predictive value for the classification of pat...
Autores principales: | Fergus, Paul, Hussain, Abir, Al-Jumeily, Dhiya, Huang, De-Shuang, Bouguila, Nizar |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5498914/ https://www.ncbi.nlm.nih.gov/pubmed/28679415 http://dx.doi.org/10.1186/s12938-017-0378-z |
Ejemplares similares
-
Prediction of Preterm Deliveries from EHG Signals Using Machine Learning
por: Fergus, Paul, et al.
Publicado: (2013) -
Implementation of machine learning algorithms to create diabetic patient re-admission profiles
por: Alloghani, Mohamed, et al.
Publicado: (2019) -
Correction to: Implementation of machine learning algorithms to create diabetic patient re-admission profiles
por: Alloghani, Mohamed, et al.
Publicado: (2020) -
Wide and deep learning based approaches for classification of Alzheimer’s disease using genome-wide association studies
por: Alatrany, Abbas Saad, et al.
Publicado: (2023) -
A Novel Method of Early Diagnosis of Alzheimer's Disease Based on EEG Signals
por: Al-Jumeily, Dhiya, et al.
Publicado: (2015)