Cargando…

Genome-wide association study identifies candidate genes for piglet splay leg syndrome in different populations

BACKGROUND: Piglet splay leg syndrome (PSL) is one of the most frequent genetic defects, and can cause considerable economic loss in pig production. The present understanding of etiology and pathogenesis of PSL is poor. The current study focused on identifying loci associated with PSL through a geno...

Descripción completa

Detalles Bibliográficos
Autores principales: Hao, Xingjie, Plastow, Graham, Zhang, Chunyan, Xu, Sutong, Hu, Zhiqiu, Yang, Tianfu, Wang, Kai, Yang, Huawei, Yin, Xiaoxue, Liu, Shili, Wang, Zhenghua, Wang, Zhiquan, Zhang, Shujun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5499021/
https://www.ncbi.nlm.nih.gov/pubmed/28679362
http://dx.doi.org/10.1186/s12863-017-0532-4
Descripción
Sumario:BACKGROUND: Piglet splay leg syndrome (PSL) is one of the most frequent genetic defects, and can cause considerable economic loss in pig production. The present understanding of etiology and pathogenesis of PSL is poor. The current study focused on identifying loci associated with PSL through a genome-wide association study (GWAS) performed with the Illumina Porcine60 SNP Beadchip v2.0. The study was a case/control design with four pig populations (Duroc, Landrace, Yorkshire and one crossbred of Landrace × Yorkshire). RESULT: After quality control of the genotyping data, 185 animals (73 cases, 112 controls) and 43,495 SNPs were retained for further analysis. Principal components (PCs) identified from the genomic kinship matrix were included in the statistical model for correcting the effect of population structure. Seven chromosome-wide significant SNPs were identified on Sus scrofa chromosome 1 (SSC1), SSC2 (2 SNPs), SSC7, SSC15 (2 SNPs) and SSC16 after strict Bonferroni correction. Four genes (HOMER1 and JMY on SSC2, ITGA1 on SSC16, and RAB32 on SSC1) related to muscle development, glycogen metabolism and mitochondrial dynamics were identified as potential candidate genes for PSL. CONCLUSIONS: We identified seven chromosome-wide significant SNPs associated with PSL and four potential candidate genes for PSL. To our knowledge, this is the first pilot study aiming to identify the loci associated with PSL using GWAS. Further investigations and validations for those findings are encouraged.