Cargando…

Studying plant–pollinator interactions facing climate change and changing environments(1)

Plant–pollinator interactions are essential for successful plant reproduction in both natural and agricultural systems. These interactions are negatively impacted by recent large-scale alterations of the environments, particularly climate change. The responses of plants and pollinators to changing a...

Descripción completa

Detalles Bibliográficos
Autores principales: Byers, Diane L., Chang, Shu-Mei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Botanical Society of America 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5499307/
https://www.ncbi.nlm.nih.gov/pubmed/28690934
http://dx.doi.org/10.3732/apps.1700052
Descripción
Sumario:Plant–pollinator interactions are essential for successful plant reproduction in both natural and agricultural systems. These interactions are negatively impacted by recent large-scale alterations of the environments, particularly climate change. The responses of plants and pollinators to changing abiotic conditions that vary seasonally and geographically are often uncoordinated, potentially leading to the breakdown of this interaction. The complexity of the responses of plants and pollinators to our changing climate necessitates creative approaches. The six articles in this special issue directly address this need by providing a variety of key methods and reviews of current methodology. The articles include: DNA barcoding methods for use on pollen collected from visiting bees; methods for assessment of plant attraction traits (nectar and review of floral volatiles methods); a field sampling method for ground nesting bees; a review of using spatial and temporal transplants for addressing changing dynamics of plant–pollinator interactions; and a review of approaches used to assess potential shifts in phenology of plants and pollinators. Collectively, these articles illustrate some of the breadth of approaches needed to address the changing dynamics of plant–pollinator interactions.