Cargando…
Gene set selection via LASSO penalized regression (SLPR)
Gene set testing is an important bioinformatics technique that addresses the challenges of power, interpretation and replication. To better support the analysis of large and highly overlapping gene set collections, researchers have recently developed a number of multiset methods that jointly evaluat...
Autores principales: | Frost, H. Robert, Amos, Christopher I. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5499546/ https://www.ncbi.nlm.nih.gov/pubmed/28472344 http://dx.doi.org/10.1093/nar/gkx291 |
Ejemplares similares
-
Variance-adjusted Mahalanobis (VAM): a fast and accurate method for cell-specific gene set scoring
por: Frost, Hildreth Robert
Publicado: (2020) -
LASSO type penalized spline regression for binary data
por: Mullah, Muhammad Abu Shadeque, et al.
Publicado: (2021) -
The prediction of live weight of hair goats through penalized regression methods: LASSO and adaptive LASSO
por: Akkol, Suna
Publicado: (2018) -
Quantitative set analysis for gene expression: a method to quantify gene set differential expression including gene-gene correlations
por: Yaari, Gur, et al.
Publicado: (2013) -
Quantifying selection in high-throughput Immunoglobulin sequencing data sets
por: Yaari, Gur, et al.
Publicado: (2012)