Cargando…

4-O-Methylhonokiol Protects HaCaT Cells from TGF-β1-Induced Cell Cycle Arrest by Regulating Canonical and Non-Canonical Pathways of TGF-β Signaling

4-O-methylhonokiol, a neolignan compound from Magnolia Officinalis, has been reported to have various biological activities including hair growth promoting effect. However, although transforming growth factor-β (TGF-β) signal pathway has an essential role in the regression induction of hair growth,...

Descripción completa

Detalles Bibliográficos
Autores principales: Kim, Sang-Cheol, Kang, Jung-Il, Hyun, Jin-Won, Kang, Ji-Hoon, Koh, Young-Sang, Kim, Young-Heui, Kim, Ki-Ho, Ko, Ji-Hee, Yoo, Eun-Sook, Kang, Hee-Kyoung
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Korean Society of Applied Pharmacology 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5499621/
https://www.ncbi.nlm.nih.gov/pubmed/28190316
http://dx.doi.org/10.4062/biomolther.2016.003
Descripción
Sumario:4-O-methylhonokiol, a neolignan compound from Magnolia Officinalis, has been reported to have various biological activities including hair growth promoting effect. However, although transforming growth factor-β (TGF-β) signal pathway has an essential role in the regression induction of hair growth, the effect of 4-O-methylhonokiol on the TGF-β signal pathway has not yet been elucidated. We thus examined the effect of 4-O-methylhonokiol on TGF-β-induced canonical and noncanonical pathways in HaCaT human keratinocytes. When HaCaT cells were pretreated with 4-O-methylhonokiol, TGF-β1-induced G1/G0 phase arrest and TGF-β1-induced p21 expression were decreased. Moreover, 4-O-methylhonokiol inhibited nuclear translocation of Smad2/3, Smad4 and Sp1 in TGF-β1-induced canonical pathway. We observed that ERK phosphorylation by TGF-β1 was significantly attenuated by treatment with 4-O-methylhonokiol. 4-O-methylhonokiol inhibited TGF-β1-induced reactive oxygen species (ROS) production and reduced the increase of NADPH oxidase 4 (NOX4) mRNA level in TGF-β1-induced noncanonical pathway. These results indicate that 4-O-methylhonokiol could inhibit TGF-β1-induced cell cycle arrest through inhibition of canonical and noncanonical pathways in human keratinocyte HaCaT cell and that 4-O-methylhonokiol might have protective action on TGF-β1-induced cell cycle arrest.