Cargando…
Differential expression analysis for RNAseq using Poisson mixed models
Identifying differentially expressed (DE) genes from RNA sequencing (RNAseq) studies is among the most common analyses in genomics. However, RNAseq DE analysis presents several statistical and computational challenges, including over-dispersed read counts and, in some settings, sample non-independen...
Autores principales: | Sun, Shiquan, Hood, Michelle, Scott, Laura, Peng, Qinke, Mukherjee, Sayan, Tung, Jenny, Zhou, Xiang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5499851/ https://www.ncbi.nlm.nih.gov/pubmed/28369632 http://dx.doi.org/10.1093/nar/gkx204 |
Ejemplares similares
-
Benchmarking of a Bayesian single cell RNAseq differential gene expression test for dose–response study designs
por: Nault, Rance, et al.
Publicado: (2022) -
IMAGE: high-powered detection of genetic effects on DNA methylation using integrated methylation QTL mapping and allele-specific analysis
por: Fan, Yue, et al.
Publicado: (2019) -
Whole-transcriptome RNAseq analysis from minute amount of total RNA
por: Tariq, Muhammad A., et al.
Publicado: (2011) -
A two-parameter generalized Poisson model to improve the analysis of RNA-seq data
por: Srivastava, Sudeep, et al.
Publicado: (2010) -
UFold: fast and accurate RNA secondary structure prediction with deep learning
por: Fu, Laiyi, et al.
Publicado: (2021)