Cargando…

Site-specific recruitment of epigenetic factors with a modular CRISPR/Cas system

Dissecting the complex network of epigenetic modifications requires tools that combine precise recognition of DNA sequences with the capability to modify epigenetic marks. The CRISPR/Cas system has been proven to be a valuable addition to existing methodologies that fulfill these tasks. So far, sequ...

Descripción completa

Detalles Bibliográficos
Autores principales: Anton, Tobias, Bultmann, Sebastian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Taylor & Francis 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5499900/
https://www.ncbi.nlm.nih.gov/pubmed/28448738
http://dx.doi.org/10.1080/19491034.2017.1292194
Descripción
Sumario:Dissecting the complex network of epigenetic modifications requires tools that combine precise recognition of DNA sequences with the capability to modify epigenetic marks. The CRISPR/Cas system has been proven to be a valuable addition to existing methodologies that fulfill these tasks. So far, sequence-specific editing of epigenetic modifications such as DNA methylation and histone posttranslational modifications relied on direct fusions of enzymatically inactivated Cas9 (dCas9) with epigenetic effectors. Here, we report a novel, modular system that facilitates the recruitment of any GFP-tagged protein to desired genomic loci. By fusing dCas9 to a GFP-binding nanobody (GBP) we demonstrate that prevalent epigenetic modifications at mouse major satellite repeats can be erased or set de novo by recruiting GFP-coupled catalytic domains of TET1 and DNMT3A, respectively. Furthermore, we construct an inducible expression system that enables a temporally controlled expression of both GBP-dCas9 and the effector protein. Thus, our approach further expands the CRISPR/Cas toolbox for site-specific manipulation of epigenetic modifications with a modular and easy-to-use system.