Cargando…
Phosphorylation of the HIV-1 capsid by MELK triggers uncoating to promote viral cDNA synthesis
Regulation of capsid disassembly is crucial for efficient HIV-1 cDNA synthesis after entry, yet host factors involved in this process remain largely unknown. Here, we employ genetic screening of human T-cells to identify maternal embryonic leucine zipper kinase (MELK) as a host factor required for o...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5500366/ https://www.ncbi.nlm.nih.gov/pubmed/28683086 http://dx.doi.org/10.1371/journal.ppat.1006441 |
Sumario: | Regulation of capsid disassembly is crucial for efficient HIV-1 cDNA synthesis after entry, yet host factors involved in this process remain largely unknown. Here, we employ genetic screening of human T-cells to identify maternal embryonic leucine zipper kinase (MELK) as a host factor required for optimal uncoating of the HIV-1 core to promote viral cDNA synthesis. Depletion of MELK inhibited HIV-1 cDNA synthesis with a concomitant delay of capsid disassembly. MELK phosphorylated Ser-149 of the capsid in the multimerized HIV-1 core, and a mutant virus carrying a phosphorylation-mimetic amino-acid substitution of Ser-149 underwent premature capsid disassembly and earlier HIV-1 cDNA synthesis, and eventually failed to enter the nucleus. Moreover, a small-molecule MELK inhibitor reduced the efficiency of HIV-1 replication in peripheral blood mononuclear cells in a dose-dependent manner. These results reveal a previously unrecognized mechanism of HIV-1 capsid disassembly and implicate MELK as a potential target for anti-HIV therapy. |
---|