Cargando…
Znf179 induces differentiation and growth arrest of human primary glioblastoma multiforme in a p53-dependent cell cycle pathway
Malignant glioblastoma multiforme (GBM) is an aggressive brain tumor with strong local invasive growth and a poor prognosis. One probable way to manipulate GBM cells toward a less invasive status is to reprogram the most malignant GBM cells to a more differentiated and less oncogenic phenotype. Here...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5500472/ https://www.ncbi.nlm.nih.gov/pubmed/28684796 http://dx.doi.org/10.1038/s41598-017-05305-0 |
Sumario: | Malignant glioblastoma multiforme (GBM) is an aggressive brain tumor with strong local invasive growth and a poor prognosis. One probable way to manipulate GBM cells toward a less invasive status is to reprogram the most malignant GBM cells to a more differentiated and less oncogenic phenotype. Herein, we identified a novel role of a RING finger protein Znf179 in gliomagenesis. Znf179 overexpression induced differentiation of primary GBM cells, which were accompanied with elevated glial fibrillary acidic protein (GFAP) expression through up-regulating several cell-cycle-related factors, p53, p21, and p27, and allowed the cell-cycle arrest in the G(0)/G(1) phase. In addition, Znf179 was highly correlated with the prognosis and survival rates of glioma patients. The expression levels of Znf179 was relatively lower in glioma patients compared to normal people, and glioma patients with lower expression levels of Znf179 mRNA had poorer prognosis and lower survival rates. In conclusion, we provide novel insight that Znf179 can reprogram GBM cells into a more-differentiated phenotype and prevent the progression of gliomas to a more-malignant state through p53-mediated cell-cycle signaling pathways. Understanding the molecular mechanism of Znf179 in gliomagenesis could help predict prognostic consequences, and targeting Znf179 could be a potential biomarker for glioma progression. |
---|