Cargando…
Facile Control over the Supramolecular Ordering of Self-assembled Peptide Scaffolds by Simultaneous Assembly with a Polysacharride
Enabling control over macromolecular ordering and the spatial distribution of structures formed via the mechanisms of molecular self-assembly is a challenge that could yield a range of new functional materials. In particular, using the self-assembly of minimalist peptides, to drive the incorporation...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5500548/ https://www.ncbi.nlm.nih.gov/pubmed/28684767 http://dx.doi.org/10.1038/s41598-017-04643-3 |
Sumario: | Enabling control over macromolecular ordering and the spatial distribution of structures formed via the mechanisms of molecular self-assembly is a challenge that could yield a range of new functional materials. In particular, using the self-assembly of minimalist peptides, to drive the incorporation of large complex molecules will allow a functionalization strategy for the next generation of biomaterial engineering. Here, for the first time, we show that co-assembly with increasing concentrations of a highly charged polysaccharide, fucoidan, the microscale ordering of Fmoc-FRGDF peptide fibrils and subsequent mechanical properties of the resultant hydrogel can be easily and effectively manipulated without disruption to the nanofibrillar structure of the assembly. |
---|