Cargando…

Correlative cellular ptychography with functionalized nanoparticles at the Fe L-edge

Precise localization of nanoparticles within a cell is crucial to the understanding of cell-particle interactions and has broad applications in nanomedicine. Here, we report a proof-of-principle experiment for imaging individual functionalized nanoparticles within a mammalian cell by correlative mic...

Descripción completa

Detalles Bibliográficos
Autores principales: Gallagher-Jones, Marcus, Dias, Carlos Sato Baraldi, Pryor, Alan, Bouchmella, Karim, Zhao, Lingrong, Lo, Yuan Hung, Cardoso, Mateus Borba, Shapiro, David, Rodriguez, Jose, Miao, Jianwei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5500580/
https://www.ncbi.nlm.nih.gov/pubmed/28684732
http://dx.doi.org/10.1038/s41598-017-04784-5
Descripción
Sumario:Precise localization of nanoparticles within a cell is crucial to the understanding of cell-particle interactions and has broad applications in nanomedicine. Here, we report a proof-of-principle experiment for imaging individual functionalized nanoparticles within a mammalian cell by correlative microscopy. Using a chemically-fixed HeLa cell labeled with fluorescent core-shell nanoparticles as a model system, we implemented a graphene-oxide layer as a substrate to significantly reduce background scattering. We identified cellular features of interest by fluorescence microscopy, followed by scanning transmission X-ray tomography to localize the particles in 3D, and ptychographic coherent diffractive imaging of the fine features in the region at high resolution. By tuning the X-ray energy to the Fe L-edge, we demonstrated sensitive detection of nanoparticles composed of a 22 nm magnetic Fe(3)O(4) core encased by a 25-nm-thick fluorescent silica (SiO(2)) shell. These fluorescent core-shell nanoparticles act as landmarks and offer clarity in a cellular context. Our correlative microscopy results confirmed a subset of particles to be fully internalized, and high-contrast ptychographic images showed two oxidation states of individual nanoparticles with a resolution of ~16.5 nm. The ability to precisely localize individual fluorescent nanoparticles within mammalian cells will expand our understanding of the structure/function relationships for functionalized nanoparticles.