Cargando…
Finite-Size Effects on Traveling Wave Solutions to Neural Field Equations
Neural field equations are used to describe the spatio-temporal evolution of the activity in a network of synaptically coupled populations of neurons in the continuum limit. Their heuristic derivation involves two approximation steps. Under the assumption that each population in the network is large...
Autores principales: | Lang, Eva, Stannat, Wilhelm |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5500661/ https://www.ncbi.nlm.nih.gov/pubmed/28685484 http://dx.doi.org/10.1186/s13408-017-0048-2 |
Ejemplares similares
-
Convergence of solutions of the Kolmogorov equation of travelling waves
por: Bramson, Maury
Publicado: (2005) -
Exact traveling wave solutions for system of nonlinear evolution equations
por: Khan, Kamruzzaman, et al.
Publicado: (2016) -
Stochastic Partial Differential Equations and Related Fields : in Honor of Michael Röckner
por: Eberle, Andreas, et al.
Publicado: (2018) -
Traveling wave solutions of the time-delayed generalized Burgers-type equations
por: Tang, Bo, et al.
Publicado: (2016) -
Exact traveling wave solutions of modified KdV–Zakharov–Kuznetsov equation and viscous Burgers equation
por: Islam, Md Hamidul, et al.
Publicado: (2014)