Cargando…

Influence of Repeated Senna Laxative Use on Skin Barrier Function in Mice

BACKGROUND: Senna, one of the major stimulant laxatives, is widely used for treating constipation. Chronic senna use has been reported to be associated with colonic disorders such as melanosis coli and/or epithelial hyperplasia. However, there is no obvious information on the influence of chronic se...

Descripción completa

Detalles Bibliográficos
Autores principales: Yokoyama, Satoshi, Hiramoto, Keiichi, Yamate, Yurika, Ooi, Kazuya
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Korean Dermatological Association; The Korean Society for Investigative Dermatology 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5500705/
https://www.ncbi.nlm.nih.gov/pubmed/28761288
http://dx.doi.org/10.5021/ad.2017.29.4.414
Descripción
Sumario:BACKGROUND: Senna, one of the major stimulant laxatives, is widely used for treating constipation. Chronic senna use has been reported to be associated with colonic disorders such as melanosis coli and/or epithelial hyperplasia. However, there is no obvious information on the influence of chronic senna use on organs except for the intestine. OBJECTIVE: To clarify the influence of senna laxative use on skin barrier function by repeated senna administration. METHODS: Eight-week-old male hairless mice received senna (10 mg/kg/day) for 21 days. After administration, we evaluated transepidermal water loss (TEWL), and investigated the biomarkers in plasma and skin using protein analysis methods. RESULTS: Fecal water content on day seven was significantly increased; however, on day 21, it was significantly decreased after repeated senna administration. In the senna-administered group, TEWL was significantly higher compared to the control on days seven and 21. Plasma acetylcholine concentration and NO(2) (−)/NO(3) (−) were increased on days seven and 21, respectively. In skin, tryptase-positive mast cells and inducible nitric oxide synthase (iNOS)-positive cells were increased on days seven and 21, respectively. The increase of TEWL on days seven and 21 was suppressed by the administration of atropine and N(G)-nitro-L-arginine methyl ester, respectively. CONCLUSION: It was suggested that diarrhea or constipation induced by repeated senna administration caused the impairment of skin barrier function. There is a possibility that this impaired skin barrier function occurred due to degranulation of mast cells via cholinergic signals or oxidative stress derived from iNOS.