Cargando…
Filtering Entities to Optimize Identification of Adverse Drug Reaction From Social Media: How Can the Number of Words Between Entities in the Messages Help?
BACKGROUND: With the increasing popularity of Web 2.0 applications, social media has made it possible for individuals to post messages on adverse drug reactions. In such online conversations, patients discuss their symptoms, medical history, and diseases. These disorders may correspond to adverse dr...
Autores principales: | Abdellaoui, Redhouane, Schück, Stéphane, Texier, Nathalie, Burgun, Anita |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5500778/ https://www.ncbi.nlm.nih.gov/pubmed/28642212 http://dx.doi.org/10.2196/publichealth.6577 |
Ejemplares similares
-
Detection of Cases of Noncompliance to Drug Treatment in Patient Forum Posts: Topic Model Approach
por: Abdellaoui, Redhouane, et al.
Publicado: (2018) -
Adverse Drug Reaction Identification and Extraction in Social Media: A Scoping Review
por: Lardon, Jérémy, et al.
Publicado: (2015) -
Joint Word and Entity Embeddings for Entity Retrieval from a Knowledge Graph
por: Nikolaev, Fedor, et al.
Publicado: (2020) -
Web-Based Signal Detection Using Medical Forums Data in France: Comparative Analysis
por: Kürzinger, Marie-Laure, et al.
Publicado: (2018) -
Concerns Discussed on Chinese and French Social Media During the COVID-19 Lockdown: Comparative Infodemiology Study Based on Topic Modeling
por: Schück, Stéphane, et al.
Publicado: (2021)