Cargando…
epiACO - a method for identifying epistasis based on ant Colony optimization algorithm
BACKGROUND: Identifying epistasis or epistatic interactions, which refer to nonlinear interaction effects of single nucleotide polymorphisms (SNPs), is essential to understand disease susceptibility and to detect genetic architectures underlying complex diseases. Though many works have been done for...
Autores principales: | Sun, Yingxia, Shang, Junliang, Liu, Jin-Xing, Li, Shengjun, Zheng, Chun-Hou |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5500974/ https://www.ncbi.nlm.nih.gov/pubmed/28694848 http://dx.doi.org/10.1186/s13040-017-0143-7 |
Ejemplares similares
-
CACONET: Ant Colony Optimization (ACO) Based Clustering Algorithm for VANET
por: Aadil, Farhan, et al.
Publicado: (2016) -
Epi-GTBN: an approach of epistasis mining based on genetic Tabu algorithm and Bayesian network
por: Guo, Yang, et al.
Publicado: (2019) -
GenACO a multi-objective cached data offloading optimization based on genetic algorithm and ant colony optimization
por: Indana Zulfa, Mulki, et al.
Publicado: (2021) -
Routing in Wireless Sensor Networks Using an Ant Colony Optimization (ACO) Router Chip
por: Okdem, Selcuk, et al.
Publicado: (2009) -
An ant colony optimization algorithm for phylogenetic estimation under the minimum evolution principle
por: Catanzaro, Daniele, et al.
Publicado: (2007)