Cargando…
Publication bias in animal research presented at the 2008 Society of Critical Care Medicine Conference
BACKGROUND: To determine a direct measure of publication bias by determining subsequent full-paper publication (P) of studies reported in animal research abstracts presented at an international conference (A). METHODS: We selected 100 random (using a random-number generator) A from the 2008 Society...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5501347/ https://www.ncbi.nlm.nih.gov/pubmed/28683761 http://dx.doi.org/10.1186/s13104-017-2574-0 |
Sumario: | BACKGROUND: To determine a direct measure of publication bias by determining subsequent full-paper publication (P) of studies reported in animal research abstracts presented at an international conference (A). METHODS: We selected 100 random (using a random-number generator) A from the 2008 Society of Critical Care Medicine Conference. Using a data collection form and study manual, we recorded methodology and result variables from A. We searched PubMed and EMBASE to June 2015, and DOAJ and Google Scholar to May 2017 to screen for subsequent P. Methodology and result variables were recorded from P to determine changes in reporting from A. Predictors of P were examined using Fisher’s Exact Test. RESULTS: 62% (95% CI 52–71%) of studies described in A were subsequently P after a median 19 [IQR 9–33.3] months from conference presentation. Reporting of studies in A was of low quality: randomized 27% (the method of randomization and allocation concealment not described), blinded 0%, sample-size calculation stated 0%, specifying the primary outcome 26%, numbers given with denominators 6%, and stating number of animals used 47%. Only being an orally presented (vs. poster presented) A (14/16 vs. 48/84, p = 0.025) predicted P. Reporting of studies in P was of poor quality: randomized 39% (the method of randomization and allocation concealment not described), likely blinded 6%, primary outcome specified 5%, sample size calculation stated 0%, numbers given with denominators 34%, and number of animals used stated 56%. Changes in reporting from A to P occurred: from non-randomized to randomized 19%, from non-blinded to blinded 6%, from negative to positive outcomes 8%, from having to not having a stated primary outcome 16%, and from non-statistically to statistically significant findings 37%. Post-hoc, using publication data, P was predicted by having positive outcomes (published 62/62, unpublished 33/38; p = 0.003), or statistically significant results (published 58/62, unpublished 20/38; p < 0.001). CONCLUSIONS: Only 62% (95% CI 52–71%) of animal research A are subsequently P; this was predicted by oral presentation of the A, finally having positive outcomes, and finally having statistically significant results. Publication bias is prevalent in critical care animal research. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13104-017-2574-0) contains supplementary material, which is available to authorized users. |
---|