Cargando…
Exotic QTL improve grain quality in the tri-parental wheat population SW84
DEVELOPING THE TRI-PARENTAL EXOTIC WHEAT POPULATION SW84: Genetic diversity of cultivated wheat was markedly reduced, first, during domestication and, second, since the onset of modern elite breeding. There is an increasing demand for utilizing genetic resources to increase genetic diversity and, si...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5501409/ https://www.ncbi.nlm.nih.gov/pubmed/28686676 http://dx.doi.org/10.1371/journal.pone.0179851 |
_version_ | 1783248778668539904 |
---|---|
author | Nedelkou, Ioanna-Pavlina Maurer, Andreas Schubert, Anne Léon, Jens Pillen, Klaus |
author_facet | Nedelkou, Ioanna-Pavlina Maurer, Andreas Schubert, Anne Léon, Jens Pillen, Klaus |
author_sort | Nedelkou, Ioanna-Pavlina |
collection | PubMed |
description | DEVELOPING THE TRI-PARENTAL EXOTIC WHEAT POPULATION SW84: Genetic diversity of cultivated wheat was markedly reduced, first, during domestication and, second, since the onset of modern elite breeding. There is an increasing demand for utilizing genetic resources to increase genetic diversity and, simultaneously, to improve agronomic performance of cultivated wheat. To locate favorable effects of exotic wheat alleles, we developed the tri-parental wheat population SW84. The population was derived from crossing the hexaploid spring wheat cultivars Triso and Devon with one synthetic exotic donor accession, Syn084L, followed by two rounds of backcrossing and three rounds of selfing. SW84 consists of 359 BC(2)F(4) lines, split into two families, D84 (Devon*Syn084L) and T84 (Triso*Syn084L). STUDYING THE GENETIC CONTROL OF GRAIN QUALITY IN SW84: As a case study, grain quality of SW84 was studied in replicated field trials. Transgressive segregation was observed for all studied grain quality traits by evaluating SW84 for two years at two locations under low and high nitrogen supply. Subsequently, a genome-wide association study (GWAS) was carried out based on genomic data derived from a 90k Infinium iSELECT single nucleotide polymorphism (SNP) array. In total, GWAS yielded 37 marker-trait associations, summarized to 16 quantitative trait loci (QTL). These SNPs indicate genetic regulators of grain protein content, grain hardness, sedimentation value and sedimentation ratio. The majority of exotic QTL alleles (75%) exerted favorable effects, increasing grain protein content and sedimentation value in ten and two cases, respectively. For instance, two exotic QTL alleles were associated with a substantial increase of grain protein content and sedimentation value by 1.09% and 7.31 ml, respectively. This finding confirms the potential of exotic germplasm to improve grain quality in cultivated wheat. So far, the molecular nature of most of the detected QTL is unknown. However, two QTL correspond to known genes controlling grain quality: The major QTL on chromosome 6B, increasing grain protein content by 0.70%, on average, co-localizes with the NAM-B1 gene, known to control grain protein content as well as iron and zinc content. Likewise, the major QTL on chromosome 5D, reducing grain hardness by 8.98%, on average, co-localizes with the gene for puroindoline b (Pinb-D1) at the Ha locus. In total, 13 QTL were detected across families, whereas one and three QTL were exclusively detected in families D84 and T84, respectively. Likewise, ten QTL were detected across nitrogen treatments, whereas one and five QTL were exclusively detected under low and high N treatments, respectively. Our data indicate that most effects in SW84 act across families and N levels. Merging of data from two families or two N treatments may, thus, be considered in association studies to increase sample size and, as a result, QTL detection power. UTILIZING FAVORABLE EXOTIC QTL ALLELES IN WHEAT BREEDING: Our study serves as a model how favorable exotic QTL alleles can be located in exotic germplasm of wheat. In future, the localized favorable exotic QTL alleles will be utilized in wheat breeding programs to simultaneously improve grain quality and selectively expand genetic diversity of the elite wheat gene pool. |
format | Online Article Text |
id | pubmed-5501409 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-55014092017-07-25 Exotic QTL improve grain quality in the tri-parental wheat population SW84 Nedelkou, Ioanna-Pavlina Maurer, Andreas Schubert, Anne Léon, Jens Pillen, Klaus PLoS One Research Article DEVELOPING THE TRI-PARENTAL EXOTIC WHEAT POPULATION SW84: Genetic diversity of cultivated wheat was markedly reduced, first, during domestication and, second, since the onset of modern elite breeding. There is an increasing demand for utilizing genetic resources to increase genetic diversity and, simultaneously, to improve agronomic performance of cultivated wheat. To locate favorable effects of exotic wheat alleles, we developed the tri-parental wheat population SW84. The population was derived from crossing the hexaploid spring wheat cultivars Triso and Devon with one synthetic exotic donor accession, Syn084L, followed by two rounds of backcrossing and three rounds of selfing. SW84 consists of 359 BC(2)F(4) lines, split into two families, D84 (Devon*Syn084L) and T84 (Triso*Syn084L). STUDYING THE GENETIC CONTROL OF GRAIN QUALITY IN SW84: As a case study, grain quality of SW84 was studied in replicated field trials. Transgressive segregation was observed for all studied grain quality traits by evaluating SW84 for two years at two locations under low and high nitrogen supply. Subsequently, a genome-wide association study (GWAS) was carried out based on genomic data derived from a 90k Infinium iSELECT single nucleotide polymorphism (SNP) array. In total, GWAS yielded 37 marker-trait associations, summarized to 16 quantitative trait loci (QTL). These SNPs indicate genetic regulators of grain protein content, grain hardness, sedimentation value and sedimentation ratio. The majority of exotic QTL alleles (75%) exerted favorable effects, increasing grain protein content and sedimentation value in ten and two cases, respectively. For instance, two exotic QTL alleles were associated with a substantial increase of grain protein content and sedimentation value by 1.09% and 7.31 ml, respectively. This finding confirms the potential of exotic germplasm to improve grain quality in cultivated wheat. So far, the molecular nature of most of the detected QTL is unknown. However, two QTL correspond to known genes controlling grain quality: The major QTL on chromosome 6B, increasing grain protein content by 0.70%, on average, co-localizes with the NAM-B1 gene, known to control grain protein content as well as iron and zinc content. Likewise, the major QTL on chromosome 5D, reducing grain hardness by 8.98%, on average, co-localizes with the gene for puroindoline b (Pinb-D1) at the Ha locus. In total, 13 QTL were detected across families, whereas one and three QTL were exclusively detected in families D84 and T84, respectively. Likewise, ten QTL were detected across nitrogen treatments, whereas one and five QTL were exclusively detected under low and high N treatments, respectively. Our data indicate that most effects in SW84 act across families and N levels. Merging of data from two families or two N treatments may, thus, be considered in association studies to increase sample size and, as a result, QTL detection power. UTILIZING FAVORABLE EXOTIC QTL ALLELES IN WHEAT BREEDING: Our study serves as a model how favorable exotic QTL alleles can be located in exotic germplasm of wheat. In future, the localized favorable exotic QTL alleles will be utilized in wheat breeding programs to simultaneously improve grain quality and selectively expand genetic diversity of the elite wheat gene pool. Public Library of Science 2017-07-07 /pmc/articles/PMC5501409/ /pubmed/28686676 http://dx.doi.org/10.1371/journal.pone.0179851 Text en © 2017 Nedelkou et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Nedelkou, Ioanna-Pavlina Maurer, Andreas Schubert, Anne Léon, Jens Pillen, Klaus Exotic QTL improve grain quality in the tri-parental wheat population SW84 |
title | Exotic QTL improve grain quality in the tri-parental wheat population SW84 |
title_full | Exotic QTL improve grain quality in the tri-parental wheat population SW84 |
title_fullStr | Exotic QTL improve grain quality in the tri-parental wheat population SW84 |
title_full_unstemmed | Exotic QTL improve grain quality in the tri-parental wheat population SW84 |
title_short | Exotic QTL improve grain quality in the tri-parental wheat population SW84 |
title_sort | exotic qtl improve grain quality in the tri-parental wheat population sw84 |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5501409/ https://www.ncbi.nlm.nih.gov/pubmed/28686676 http://dx.doi.org/10.1371/journal.pone.0179851 |
work_keys_str_mv | AT nedelkouioannapavlina exoticqtlimprovegrainqualityinthetriparentalwheatpopulationsw84 AT maurerandreas exoticqtlimprovegrainqualityinthetriparentalwheatpopulationsw84 AT schubertanne exoticqtlimprovegrainqualityinthetriparentalwheatpopulationsw84 AT leonjens exoticqtlimprovegrainqualityinthetriparentalwheatpopulationsw84 AT pillenklaus exoticqtlimprovegrainqualityinthetriparentalwheatpopulationsw84 |