Cargando…
Effect of carrier confinement on effective mass of excitons and estimation of ultralow disorder in Al(x)Ga(1−x)As/GaAs quantum wells by magneto-photoluminescence
Effect of charge carrier confinement and ultra-low disorder acquainted in AlGaAs/GaAs multi-quantum well system is investigated via Magneto-photoluminescence spectroscopy. Significant increase of effective mass is observed for the confined exciton in narrow QWs. The foremost reason behind such an ob...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5501840/ https://www.ncbi.nlm.nih.gov/pubmed/28687735 http://dx.doi.org/10.1038/s41598-017-05139-w |
Sumario: | Effect of charge carrier confinement and ultra-low disorder acquainted in AlGaAs/GaAs multi-quantum well system is investigated via Magneto-photoluminescence spectroscopy. Significant increase of effective mass is observed for the confined exciton in narrow QWs. The foremost reason behind such an observation is due to the induced non-parabolicity in bands. Moreover, as the thickness of the QW are reduced, confined excitons in QW experience atomic irregularities at the hetero-junctions and their effects are prominent in the photoluminescence linewidth. Amount of photoluminescence line-broadening caused by the atomic irregularities at the hetero-junctions is correlated with average fluctuation (δ (1)) in QW thickness. The estimated δ (1) for Al(0.3)Ga(0.7)As/GaAs QWs are found to be ±(0.14 − 1.6)× ‘one monolayer thickness of GaAs layer’. Further, the strong perturbations due to magnetic field in a system helps in realizing optical properties of exciton in QWs, where magnetic field is used as a probe to detect ultralow defects in the QW. Additionally, the influence of magnetic field on the free and bound exciton luminescence is explained by a simple model. The proposed approach for measuring the interface and volume defects in an ultra-low disordered system by Magneto-PL spectroscopy technique will be highly beneficial in high mobility devices for advanced applications. |
---|