Cargando…

Computational sensing of herpes simplex virus using a cost-effective on-chip microscope

Caused by the herpes simplex virus (HSV), herpes is a viral infection that is one of the most widespread diseases worldwide. Here we present a computational sensing technique for specific detection of HSV using both viral immuno-specificity and the physical size range of the viruses. This label-free...

Descripción completa

Detalles Bibliográficos
Autores principales: Ray, Aniruddha, Daloglu, Mustafa Ugur, Ho, Joslynn, Torres, Avee, Mcleod, Euan, Ozcan, Aydogan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5501859/
https://www.ncbi.nlm.nih.gov/pubmed/28687769
http://dx.doi.org/10.1038/s41598-017-05124-3
Descripción
Sumario:Caused by the herpes simplex virus (HSV), herpes is a viral infection that is one of the most widespread diseases worldwide. Here we present a computational sensing technique for specific detection of HSV using both viral immuno-specificity and the physical size range of the viruses. This label-free approach involves a compact and cost-effective holographic on-chip microscope and a surface-functionalized glass substrate prepared to specifically capture the target viruses. To enhance the optical signatures of individual viruses and increase their signal-to-noise ratio, self-assembled polyethylene glycol based nanolenses are rapidly formed around each virus particle captured on the substrate using a portable interface. Holographic shadows of specifically captured viruses that are surrounded by these self-assembled nanolenses are then reconstructed, and the phase image is used for automated quantification of the size of each particle within our large field-of-view, ~30 mm(2). The combination of viral immuno-specificity due to surface functionalization and the physical size measurements enabled by holographic imaging is used to sensitively detect and enumerate HSV particles using our compact and cost-effective platform. This computational sensing technique can find numerous uses in global health related applications in resource-limited environments.