Cargando…
Tactile feedback is an effective instrument for the training of grasping with a prosthesis at low- and medium-force levels
Grasping is a complex task routinely performed in an anticipatory (feedforward) manner, where sensory feedback is responsible for learning and updating the internal model of grasp dynamics. This study aims at evaluating whether providing a proportional tactile force feedback during the myoelectric c...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5502062/ https://www.ncbi.nlm.nih.gov/pubmed/28550423 http://dx.doi.org/10.1007/s00221-017-4991-7 |
_version_ | 1783248889498828800 |
---|---|
author | De Nunzio, Alessandro Marco Dosen, Strahinja Lemling, Sabrina Markovic, Marko Schweisfurth, Meike Annika Ge, Nan Graimann, Bernhard Falla, Deborah Farina, Dario |
author_facet | De Nunzio, Alessandro Marco Dosen, Strahinja Lemling, Sabrina Markovic, Marko Schweisfurth, Meike Annika Ge, Nan Graimann, Bernhard Falla, Deborah Farina, Dario |
author_sort | De Nunzio, Alessandro Marco |
collection | PubMed |
description | Grasping is a complex task routinely performed in an anticipatory (feedforward) manner, where sensory feedback is responsible for learning and updating the internal model of grasp dynamics. This study aims at evaluating whether providing a proportional tactile force feedback during the myoelectric control of a prosthesis facilitates learning a stable internal model of the prosthesis force control. Ten able-bodied subjects controlled a sensorized myoelectric prosthesis performing four blocks of consecutive grasps at three levels of target force (30, 50, and 70%), repeatedly closing the fully opened hand. In the first and third block, the subjects received tactile and visual feedback, respectively, while during the second and fourth block, the feedback was removed. The subjects also performed an additional block with no feedback 1 day after the training (Retest). The median and interquartile range of the generated forces was computed to assess the accuracy and precision of force control. The results demonstrated that the feedback was indeed an effective instrument for the training of prosthesis control. After the training, the subjects were still able to accurately generate the desired force for the low and medium target (30 and 50% of maximum force available in a prosthesis), despite the feedback being removed within the session and during the retest (low target force). However, the training was substantially less successful for high forces (70% of prosthesis maximum force), where subjects exhibited a substantial loss of accuracy as soon as the feedback was removed. The precision of control decreased with higher forces and it was consistent across conditions, determined by an intrinsic variability of repeated myoelectric grasping. This study demonstrated that the subject could rely on the tactile feedback to adjust the motor command to the prosthesis across trials. The subjects adjusted the mean level of muscle activation (accuracy), whereas the precision could not be modulated as it depends on the intrinsic myoelectric variability. They were also able to maintain the feedforward command even after the feedback was removed, demonstrating thereby a stable learning, but the retention depended on the level of the target force. This is an important insight into the role of feedback as an instrument for learning of anticipatory prosthesis force control. |
format | Online Article Text |
id | pubmed-5502062 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Springer Berlin Heidelberg |
record_format | MEDLINE/PubMed |
spelling | pubmed-55020622017-07-24 Tactile feedback is an effective instrument for the training of grasping with a prosthesis at low- and medium-force levels De Nunzio, Alessandro Marco Dosen, Strahinja Lemling, Sabrina Markovic, Marko Schweisfurth, Meike Annika Ge, Nan Graimann, Bernhard Falla, Deborah Farina, Dario Exp Brain Res Research Article Grasping is a complex task routinely performed in an anticipatory (feedforward) manner, where sensory feedback is responsible for learning and updating the internal model of grasp dynamics. This study aims at evaluating whether providing a proportional tactile force feedback during the myoelectric control of a prosthesis facilitates learning a stable internal model of the prosthesis force control. Ten able-bodied subjects controlled a sensorized myoelectric prosthesis performing four blocks of consecutive grasps at three levels of target force (30, 50, and 70%), repeatedly closing the fully opened hand. In the first and third block, the subjects received tactile and visual feedback, respectively, while during the second and fourth block, the feedback was removed. The subjects also performed an additional block with no feedback 1 day after the training (Retest). The median and interquartile range of the generated forces was computed to assess the accuracy and precision of force control. The results demonstrated that the feedback was indeed an effective instrument for the training of prosthesis control. After the training, the subjects were still able to accurately generate the desired force for the low and medium target (30 and 50% of maximum force available in a prosthesis), despite the feedback being removed within the session and during the retest (low target force). However, the training was substantially less successful for high forces (70% of prosthesis maximum force), where subjects exhibited a substantial loss of accuracy as soon as the feedback was removed. The precision of control decreased with higher forces and it was consistent across conditions, determined by an intrinsic variability of repeated myoelectric grasping. This study demonstrated that the subject could rely on the tactile feedback to adjust the motor command to the prosthesis across trials. The subjects adjusted the mean level of muscle activation (accuracy), whereas the precision could not be modulated as it depends on the intrinsic myoelectric variability. They were also able to maintain the feedforward command even after the feedback was removed, demonstrating thereby a stable learning, but the retention depended on the level of the target force. This is an important insight into the role of feedback as an instrument for learning of anticipatory prosthesis force control. Springer Berlin Heidelberg 2017-05-26 2017 /pmc/articles/PMC5502062/ /pubmed/28550423 http://dx.doi.org/10.1007/s00221-017-4991-7 Text en © The Author(s) 2017 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. |
spellingShingle | Research Article De Nunzio, Alessandro Marco Dosen, Strahinja Lemling, Sabrina Markovic, Marko Schweisfurth, Meike Annika Ge, Nan Graimann, Bernhard Falla, Deborah Farina, Dario Tactile feedback is an effective instrument for the training of grasping with a prosthesis at low- and medium-force levels |
title | Tactile feedback is an effective instrument for the training of grasping with a prosthesis at low- and medium-force levels |
title_full | Tactile feedback is an effective instrument for the training of grasping with a prosthesis at low- and medium-force levels |
title_fullStr | Tactile feedback is an effective instrument for the training of grasping with a prosthesis at low- and medium-force levels |
title_full_unstemmed | Tactile feedback is an effective instrument for the training of grasping with a prosthesis at low- and medium-force levels |
title_short | Tactile feedback is an effective instrument for the training of grasping with a prosthesis at low- and medium-force levels |
title_sort | tactile feedback is an effective instrument for the training of grasping with a prosthesis at low- and medium-force levels |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5502062/ https://www.ncbi.nlm.nih.gov/pubmed/28550423 http://dx.doi.org/10.1007/s00221-017-4991-7 |
work_keys_str_mv | AT denunzioalessandromarco tactilefeedbackisaneffectiveinstrumentforthetrainingofgraspingwithaprosthesisatlowandmediumforcelevels AT dosenstrahinja tactilefeedbackisaneffectiveinstrumentforthetrainingofgraspingwithaprosthesisatlowandmediumforcelevels AT lemlingsabrina tactilefeedbackisaneffectiveinstrumentforthetrainingofgraspingwithaprosthesisatlowandmediumforcelevels AT markovicmarko tactilefeedbackisaneffectiveinstrumentforthetrainingofgraspingwithaprosthesisatlowandmediumforcelevels AT schweisfurthmeikeannika tactilefeedbackisaneffectiveinstrumentforthetrainingofgraspingwithaprosthesisatlowandmediumforcelevels AT genan tactilefeedbackisaneffectiveinstrumentforthetrainingofgraspingwithaprosthesisatlowandmediumforcelevels AT graimannbernhard tactilefeedbackisaneffectiveinstrumentforthetrainingofgraspingwithaprosthesisatlowandmediumforcelevels AT falladeborah tactilefeedbackisaneffectiveinstrumentforthetrainingofgraspingwithaprosthesisatlowandmediumforcelevels AT farinadario tactilefeedbackisaneffectiveinstrumentforthetrainingofgraspingwithaprosthesisatlowandmediumforcelevels |