Cargando…
Machine learning methods to predict child posttraumatic stress: a proof of concept study
BACKGROUND: The care of traumatized children would benefit significantly from accurate predictive models for Posttraumatic Stress Disorder (PTSD), using information available around the time of trauma. Machine Learning (ML) computational methods have yielded strong results in recent applications acr...
Autores principales: | Saxe, Glenn N., Ma, Sisi, Ren, Jiwen, Aliferis, Constantin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5502325/ https://www.ncbi.nlm.nih.gov/pubmed/28689495 http://dx.doi.org/10.1186/s12888-017-1384-1 |
Ejemplares similares
-
Mental health progress requires causal diagnostic nosology and scalable causal discovery
por: Saxe, Glenn N., et al.
Publicado: (2022) -
Computational causal discovery for post-traumatic stress in police officers
por: Saxe, Glenn N., et al.
Publicado: (2020) -
A proof-of-concept study of vicarious extinction learning and autonomic synchrony in parent–child dyads and posttraumatic stress disorder
por: Heyn, Sara A., et al.
Publicado: (2023) -
An Evaluation of Active Learning Causal Discovery Methods for Reverse-Engineering Local Causal Pathways of Gene Regulation
por: Ma, Sisi, et al.
Publicado: (2016) -
Proof of Concept for the Autobiographical Memory Flexibility (MemFlex) Intervention for Posttraumatic Stress Disorder
por: Moradi, Ali Reza, et al.
Publicado: (2021)