Cargando…
AXSIS: Exploring the frontiers in attosecond X-ray science, imaging and spectroscopy
X-ray crystallography is one of the main methods to determine atomic-resolution 3D images of the whole spectrum of molecules ranging from small inorganic clusters to large protein complexes consisting of hundred-thousands of atoms that constitute the macromolecular machinery of life. Life is not sta...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5502815/ https://www.ncbi.nlm.nih.gov/pubmed/28706325 http://dx.doi.org/10.1016/j.nima.2016.02.080 |
_version_ | 1783248987406467072 |
---|---|
author | Kärtner, F.X. Ahr, F. Calendron, A.-L. Çankaya, H. Carbajo, S. Chang, G. Cirmi, G. Dörner, K. Dorda, U. Fallahi, A. Hartin, A. Hemmer, M. Hobbs, R. Hua, Y. Huang, W.R. Letrun, R. Matlis, N. Mazalova, V. Mücke, O.D. Nanni, E. Putnam, W. Ravi, K. Reichert, F. Sarrou, I. Wu, X. Yahaghi, A. Ye, H. Zapata, L. Zhang, D. Zhou, C. Miller, R.J.D. Berggren, K.K. Graafsma, H. Meents, A. Assmann, R.W. Chapman, H.N. Fromme, P. |
author_facet | Kärtner, F.X. Ahr, F. Calendron, A.-L. Çankaya, H. Carbajo, S. Chang, G. Cirmi, G. Dörner, K. Dorda, U. Fallahi, A. Hartin, A. Hemmer, M. Hobbs, R. Hua, Y. Huang, W.R. Letrun, R. Matlis, N. Mazalova, V. Mücke, O.D. Nanni, E. Putnam, W. Ravi, K. Reichert, F. Sarrou, I. Wu, X. Yahaghi, A. Ye, H. Zapata, L. Zhang, D. Zhou, C. Miller, R.J.D. Berggren, K.K. Graafsma, H. Meents, A. Assmann, R.W. Chapman, H.N. Fromme, P. |
author_sort | Kärtner, F.X. |
collection | PubMed |
description | X-ray crystallography is one of the main methods to determine atomic-resolution 3D images of the whole spectrum of molecules ranging from small inorganic clusters to large protein complexes consisting of hundred-thousands of atoms that constitute the macromolecular machinery of life. Life is not static, and unravelling the structure and dynamics of the most important reactions in chemistry and biology is essential to uncover their mechanism. Many of these reactions, including photosynthesis which drives our biosphere, are light induced and occur on ultrafast timescales. These have been studied with high time resolution primarily by optical spectroscopy, enabled by ultrafast laser technology, but they reduce the vast complexity of the process to a few reaction coordinates. In the AXSIS project at CFEL in Hamburg, funded by the European Research Council, we develop the new method of attosecond serial X-ray crystallography and spectroscopy, to give a full description of ultrafast processes atomically resolved in real space and on the electronic energy landscape, from co-measurement of X-ray and optical spectra, and X-ray diffraction. This technique will revolutionize our understanding of structure and function at the atomic and molecular level and thereby unravel fundamental processes in chemistry and biology like energy conversion processes. For that purpose, we develop a compact, fully coherent, THz-driven atto-second X-ray source based on coherent inverse Compton scattering off a free-electron crystal, to outrun radiation damage effects due to the necessary high X-ray irradiance required to acquire diffraction signals. This highly synergistic project starts from a completely clean slate rather than conforming to the specifications of a large free-electron laser (FEL) user facility, to optimize the entire instrumentation towards fundamental measurements of the mechanism of light absorption and excitation energy transfer. A multidisciplinary team formed by laser-, accelerator,- X-ray scientists as well as spectroscopists and biochemists optimizes X-ray pulse parameters, in tandem with sample delivery, crystal size, and advanced X-ray detectors. Ultimately, the new capability, attosecond serial X-ray crystallography and spectroscopy, will be applied to one of the most important problems in structural biology, which is to elucidate the dynamics of light reactions, electron transfer and protein structure in photosynthesis. |
format | Online Article Text |
id | pubmed-5502815 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
record_format | MEDLINE/PubMed |
spelling | pubmed-55028152017-09-01 AXSIS: Exploring the frontiers in attosecond X-ray science, imaging and spectroscopy Kärtner, F.X. Ahr, F. Calendron, A.-L. Çankaya, H. Carbajo, S. Chang, G. Cirmi, G. Dörner, K. Dorda, U. Fallahi, A. Hartin, A. Hemmer, M. Hobbs, R. Hua, Y. Huang, W.R. Letrun, R. Matlis, N. Mazalova, V. Mücke, O.D. Nanni, E. Putnam, W. Ravi, K. Reichert, F. Sarrou, I. Wu, X. Yahaghi, A. Ye, H. Zapata, L. Zhang, D. Zhou, C. Miller, R.J.D. Berggren, K.K. Graafsma, H. Meents, A. Assmann, R.W. Chapman, H.N. Fromme, P. Nucl Instrum Methods Phys Res A Article X-ray crystallography is one of the main methods to determine atomic-resolution 3D images of the whole spectrum of molecules ranging from small inorganic clusters to large protein complexes consisting of hundred-thousands of atoms that constitute the macromolecular machinery of life. Life is not static, and unravelling the structure and dynamics of the most important reactions in chemistry and biology is essential to uncover their mechanism. Many of these reactions, including photosynthesis which drives our biosphere, are light induced and occur on ultrafast timescales. These have been studied with high time resolution primarily by optical spectroscopy, enabled by ultrafast laser technology, but they reduce the vast complexity of the process to a few reaction coordinates. In the AXSIS project at CFEL in Hamburg, funded by the European Research Council, we develop the new method of attosecond serial X-ray crystallography and spectroscopy, to give a full description of ultrafast processes atomically resolved in real space and on the electronic energy landscape, from co-measurement of X-ray and optical spectra, and X-ray diffraction. This technique will revolutionize our understanding of structure and function at the atomic and molecular level and thereby unravel fundamental processes in chemistry and biology like energy conversion processes. For that purpose, we develop a compact, fully coherent, THz-driven atto-second X-ray source based on coherent inverse Compton scattering off a free-electron crystal, to outrun radiation damage effects due to the necessary high X-ray irradiance required to acquire diffraction signals. This highly synergistic project starts from a completely clean slate rather than conforming to the specifications of a large free-electron laser (FEL) user facility, to optimize the entire instrumentation towards fundamental measurements of the mechanism of light absorption and excitation energy transfer. A multidisciplinary team formed by laser-, accelerator,- X-ray scientists as well as spectroscopists and biochemists optimizes X-ray pulse parameters, in tandem with sample delivery, crystal size, and advanced X-ray detectors. Ultimately, the new capability, attosecond serial X-ray crystallography and spectroscopy, will be applied to one of the most important problems in structural biology, which is to elucidate the dynamics of light reactions, electron transfer and protein structure in photosynthesis. 2016-02-27 2016-09-01 /pmc/articles/PMC5502815/ /pubmed/28706325 http://dx.doi.org/10.1016/j.nima.2016.02.080 Text en http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Article Kärtner, F.X. Ahr, F. Calendron, A.-L. Çankaya, H. Carbajo, S. Chang, G. Cirmi, G. Dörner, K. Dorda, U. Fallahi, A. Hartin, A. Hemmer, M. Hobbs, R. Hua, Y. Huang, W.R. Letrun, R. Matlis, N. Mazalova, V. Mücke, O.D. Nanni, E. Putnam, W. Ravi, K. Reichert, F. Sarrou, I. Wu, X. Yahaghi, A. Ye, H. Zapata, L. Zhang, D. Zhou, C. Miller, R.J.D. Berggren, K.K. Graafsma, H. Meents, A. Assmann, R.W. Chapman, H.N. Fromme, P. AXSIS: Exploring the frontiers in attosecond X-ray science, imaging and spectroscopy |
title | AXSIS: Exploring the frontiers in attosecond X-ray science, imaging and spectroscopy |
title_full | AXSIS: Exploring the frontiers in attosecond X-ray science, imaging and spectroscopy |
title_fullStr | AXSIS: Exploring the frontiers in attosecond X-ray science, imaging and spectroscopy |
title_full_unstemmed | AXSIS: Exploring the frontiers in attosecond X-ray science, imaging and spectroscopy |
title_short | AXSIS: Exploring the frontiers in attosecond X-ray science, imaging and spectroscopy |
title_sort | axsis: exploring the frontiers in attosecond x-ray science, imaging and spectroscopy |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5502815/ https://www.ncbi.nlm.nih.gov/pubmed/28706325 http://dx.doi.org/10.1016/j.nima.2016.02.080 |
work_keys_str_mv | AT kartnerfx axsisexploringthefrontiersinattosecondxrayscienceimagingandspectroscopy AT ahrf axsisexploringthefrontiersinattosecondxrayscienceimagingandspectroscopy AT calendronal axsisexploringthefrontiersinattosecondxrayscienceimagingandspectroscopy AT cankayah axsisexploringthefrontiersinattosecondxrayscienceimagingandspectroscopy AT carbajos axsisexploringthefrontiersinattosecondxrayscienceimagingandspectroscopy AT changg axsisexploringthefrontiersinattosecondxrayscienceimagingandspectroscopy AT cirmig axsisexploringthefrontiersinattosecondxrayscienceimagingandspectroscopy AT dornerk axsisexploringthefrontiersinattosecondxrayscienceimagingandspectroscopy AT dordau axsisexploringthefrontiersinattosecondxrayscienceimagingandspectroscopy AT fallahia axsisexploringthefrontiersinattosecondxrayscienceimagingandspectroscopy AT hartina axsisexploringthefrontiersinattosecondxrayscienceimagingandspectroscopy AT hemmerm axsisexploringthefrontiersinattosecondxrayscienceimagingandspectroscopy AT hobbsr axsisexploringthefrontiersinattosecondxrayscienceimagingandspectroscopy AT huay axsisexploringthefrontiersinattosecondxrayscienceimagingandspectroscopy AT huangwr axsisexploringthefrontiersinattosecondxrayscienceimagingandspectroscopy AT letrunr axsisexploringthefrontiersinattosecondxrayscienceimagingandspectroscopy AT matlisn axsisexploringthefrontiersinattosecondxrayscienceimagingandspectroscopy AT mazalovav axsisexploringthefrontiersinattosecondxrayscienceimagingandspectroscopy AT muckeod axsisexploringthefrontiersinattosecondxrayscienceimagingandspectroscopy AT nannie axsisexploringthefrontiersinattosecondxrayscienceimagingandspectroscopy AT putnamw axsisexploringthefrontiersinattosecondxrayscienceimagingandspectroscopy AT ravik axsisexploringthefrontiersinattosecondxrayscienceimagingandspectroscopy AT reichertf axsisexploringthefrontiersinattosecondxrayscienceimagingandspectroscopy AT sarroui axsisexploringthefrontiersinattosecondxrayscienceimagingandspectroscopy AT wux axsisexploringthefrontiersinattosecondxrayscienceimagingandspectroscopy AT yahaghia axsisexploringthefrontiersinattosecondxrayscienceimagingandspectroscopy AT yeh axsisexploringthefrontiersinattosecondxrayscienceimagingandspectroscopy AT zapatal axsisexploringthefrontiersinattosecondxrayscienceimagingandspectroscopy AT zhangd axsisexploringthefrontiersinattosecondxrayscienceimagingandspectroscopy AT zhouc axsisexploringthefrontiersinattosecondxrayscienceimagingandspectroscopy AT millerrjd axsisexploringthefrontiersinattosecondxrayscienceimagingandspectroscopy AT berggrenkk axsisexploringthefrontiersinattosecondxrayscienceimagingandspectroscopy AT graafsmah axsisexploringthefrontiersinattosecondxrayscienceimagingandspectroscopy AT meentsa axsisexploringthefrontiersinattosecondxrayscienceimagingandspectroscopy AT assmannrw axsisexploringthefrontiersinattosecondxrayscienceimagingandspectroscopy AT chapmanhn axsisexploringthefrontiersinattosecondxrayscienceimagingandspectroscopy AT frommep axsisexploringthefrontiersinattosecondxrayscienceimagingandspectroscopy |