Cargando…

Fabrication of a GMA-co-EDMA Monolith in a 2.0 mm i.d. Polypropylene Housing

Polymers are interesting housing materials for the fabrication of inexpensive monolithic chromatography and solid phase extraction (SPE) devices. Challenges arise when polymeric monoliths are formed in non-conical, cylindrical tubes of larger diameter due to potential monolith detachment from the ho...

Descripción completa

Detalles Bibliográficos
Autores principales: Iacono, Marcello, Connolly, Damian, Heise, Andreas
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5502927/
https://www.ncbi.nlm.nih.gov/pubmed/28773385
http://dx.doi.org/10.3390/ma9040263
Descripción
Sumario:Polymers are interesting housing materials for the fabrication of inexpensive monolithic chromatography and solid phase extraction (SPE) devices. Challenges arise when polymeric monoliths are formed in non-conical, cylindrical tubes of larger diameter due to potential monolith detachment from the housing wall resulting in loss of separation performance and mechanical stability. Here, a two-step protocol is applied to ensure formation of robust homogeneous methacrylate monolith in polypropylene (PP) tubing with a diameter of 2.0 mm. Detailed Fourier-transform infrared (FTIR) spectroscopic analysis and Scanning Electron Microscopy (SEM) imaging confirm the successful pre-modification of the tubing wall with an anchoring layer of cross-linked ethylene dimethacrylate (EDMA). Subsequent formation of an EDMA-glycidyl methacrylate (GMA) monolith in the PP tube resulted in a homogeneous monolithic polymer with enhanced mechanical stability as compared to non-anchored monoliths.