Cargando…
Data mining of iron(II) and iron(III) bond-valence parameters, and their relevance for macromolecular crystallography
The bond-valence model is a reliable way to validate assumed oxidation states based on structural data. It has successfully been employed for analyzing metal-binding sites in macromolecule structures. However, inconsistent results for heme-based structures suggest that some widely used bond-valence...
Autores principales: | Zheng, Heping, Langner, Karol M., Shields, Gregory P., Hou, Jing, Kowiel, Marcin, Allen, Frank H., Murshudov, Garib, Minor, Wladek |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
International Union of Crystallography
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5503122/ https://www.ncbi.nlm.nih.gov/pubmed/28375143 http://dx.doi.org/10.1107/S2059798317000584 |
Ejemplares similares
-
The Integrated Resource for Reproducibility in Macromolecular Crystallography: Experiences of the first four years
por: Grabowski, Marek, et al.
Publicado: (2019) -
Avoidable errors in deposited macromolecular structures: an impediment to efficient data mining
por: Dauter, Zbigniew, et al.
Publicado: (2014) -
Analysis and validation of macromolecular B values
por: Masmaliyeva, Rafiga C., et al.
Publicado: (2019) -
Is too ‘creative’ language acceptable in crystallography?
por: Wlodawer, Alexander, et al.
Publicado: (2010) -
On the evolution of the quality of macromolecular models in the PDB
por: Brzezinski, Dariusz, et al.
Publicado: (2020)